Ohba's Conjecture is True for Graphs K(t+2,3,2,(k-t-2),1*t

在线阅读 下载PDF 导出详情
摘要 AgraphGiscalledchromatic-choosableifitschoicenumberisequaltoitschromaticnumber,namelych(G)=χ(G).Ohba’sconjecturestatesthateverygraphGwith2χ(G)+1orfewerverticesischromaticchoosable.ItisclearthatOhba’sconjectureistrueifandonlyifitistrueforcompletemultipartitegraphs.Recently,Kostochka,StiebitzandWoodallshowedthatOhba’sconjectureholdsforcompletemultipartitegraphswithpartitesizeatmostfive.Butthecompletemultipartitegraphswithnorestrictionontheirpartitesize,forwhichOhba’sconjecturehasbeenverifiedarenothingmorethanthegraphsKt+3,2*(k-t-1),1*tbyEnotomoetal.,andKt+2,3,2*(k-t-2),1*tfort≤4byShenetal..Inthispaper,usingtheconceptoff-choosable(orL0-size-choosable)ofgraphs,weshowthatOhba’sconjectureisalsotrueforthegraphsKt+2,3,2*(k-t-2),1*twhent≥5.Thus,Ohba’sconjectureistrueforgraphsKt+2,3,2*(k-t-2),1*tforallintegerst≥1.
机构地区 不详
出版日期 2015年04月14日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献