基于小波变换的肌肉疲劳表面肌电信号特征提取的研究

在线阅读 下载PDF 导出详情
摘要 当前肌肉疲劳表面肌电信号(surfaceelectromgography,sEMG)特征提取方法,忽略了非线性跳错信号的影响,且不能在非平稳状态下进行特征提取,存在特征提取准确度差的问题。提出基于小波变换的肌肉疲劳sEMG特征提取研究,采用小波变换对所采集的样本去噪,结合时域、频域特征分析法,融合傅里叶变换方法对肌电信号中的线性特征进行提取,根据带谱近似熵理论对非线性挑错信号进行特征回归分析,并利用拟态分解函数和希尔伯特变换法对肌电信号进行时频特征的整合提取,最终完成基于小波变换的肌肉疲劳sEMG特征提取研究。实验验证,所提方法具有可行性,且将1000个肌电信号样本分成5组,对其中的跳错信号进行特征提取,所提方法准确度较文献方法高出75%,在非平稳状态下将200个肌电信号样本分成5组进行特征提取,所提方法准确度较文献方法高出33%。由此得出,所提方法优于当前特征提取方法。
机构地区 不详
出处 《生物医学工程研究》 2019年1期
出版日期 2019年01月11日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献