基于PCA的人脸特征提取和识别

在线阅读 下载PDF 导出详情
摘要 人脸识别作为身份识别的重要技术之一,已经开始广泛应用到人们的日常生活。人脸特征提取方法--主成分分析(PCA)可以在提取样本特征的同时降低样本维数,在此基础上提出的白化主成分分析(WPCA)可以降低图像中相邻像素的相关性,核主成分分析(KPCA)能够更好地提取适合分类的特征。本文主要分析了在不同光照和噪声情况下,三种常用的人脸特征提取方法—主成分分析(PCA)、白化主成分分析(WPCA)、核主成分分析(KPCA)均采用最近邻分类方法进行识别所用时间和识别率。
机构地区 不详
出处 《计算机产品与流通》 2019年1期
出版日期 2019年01月11日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献