摘要
1998年,在先前未产气的侏罗纪Abenaki碳酸盐岩边缘相发现了大型的储集层。大多数白云岩储集层孔隙发育。这些白云岩取代了与礁和邻近的沉积环境有关的原先的粒泥状灰岩、粒灰岩以及粒状灰岩。许多白云岩随后发生了重结晶或溶解,形成了保存下来的次生孔隙的大部分。后来产生的裂缝有助于提高储集层的渗透率。先进的岩相研究技术确定这些先前的白云岩化结构的溶解,在这些白云岩中产生了大量的次生孔隙。衍射平面偏光展示了标准显微观察到的残余颗粒和结构。岩相学和地球化学观察同样确定在初期压力溶解之后在深埋条件下发生了溶解作用。溶解作用不限于白云石化颗粒的中心,就如在交代白云石化作用初期阶段,当残余方解石颗粒溶解时,通常看到的那样。换句话说,在残颗粒内白云石化是无序的,孤立的白云岩晶体同样受到不同程度的溶解。这些白云岩的地球化学特征和伴生的晚期方解石意味着盆地热流体和热水流体的沉淀作用。晚期的成岩流体(酸性或富钙),或许两者在不同的时期(基于伴随的矿化作用)看来都促进了白云岩的溶解作用。构造裂缝和缝合线构造、氨气以及在地震资料上观察到的断层的出现都意味着沿Abenaki地台边缘发生的白云岩化和其后的溶解作用受与基底相连的活化转换断层所控制。在较小的规模上,成岩流体运移通过裂缝并压力溶解裂缝。至今收集到资料支持了我们的白云石化作用和溶解作用论点,这两种作用在Abenaki储集层中产生了绝大部分的孔隙,是后缝合化作用和深埋藏成因。根据对这个区域的构造活动时间的确定以及推断与成岩作用相连系,至少部分的成岩流体是水热液性质的。
出版日期
2007年03月13日(中国期刊网平台首次上网日期,不代表论文的发表时间)