摘要
摘要:短时交通流预测是智能交通系统(ITS)的关键组成部分,其准确性、实时性直接影响到交通控制与诱导系统能否及时向出行者发布准确的交通信息,对于治理城市交通给拥堵问题具有重要意义。基于神经网络的预测方法是近年来非参数化方法中开展研究做多的,本问详细介绍了BP神经网络和RBF神经网络在交通流预测领域的应用与发展,以及国内外学者对神经网络的优化做出的努力。并提出了一个未来研究的方向即对更为复杂的网络层面上的城市道路进行预测,并拟定了一个解决方案。
出版日期
2023年08月12日(中国期刊网平台首次上网日期,不代表论文的发表时间)