学科分类
/ 1
1 个结果
  • 简介:摘要目的介绍一种基于住院患者心电图及临床特征开发的机器学习模型,用于诊断反射性晕厥。方法入选2018年6月20日至2022年5月11日于天津医科大学第二医院心脏科住院治疗的晕厥患者,经过临床评估和调查研究获得相关基线资料。确定了晕厥患者的15个特征,并进行特征排序。采用不同的机器学习方法构建反射性晕厥的诊断模型,如Logistic回归分析、感知机、支持向量机、决策树、随机森林和K最近邻算法等方法。结果最终入选410例患者,首次晕厥事件的年龄(64.5±14.6)岁,其中男236例(236/410,57.6%),65例患者确诊为反射性晕厥。纳入特征重要性排序结果位于前4位的特征构建模型,随机森林模型诊断反射性晕厥的性能最佳,曲线下面积为0.644,精确率(Precision)、召回率(Recall)和F1得分(F1 score)分别为0.794、0.849和0.791。结论人工智能算法能够识别反射性晕厥,可作为一种经济有效的筛查工具。

  • 标签: 晕厥 人工智能 诊断 心电图 临床特征