学科分类
/ 1
2 个结果
  • 简介:摘要目的利用反向传播神经网络(BPNN)算法,建立一种可以识别血糖项目随机误差的实时质控新方法并评价模型效能。方法通过北京朝阳医院实验室信息系统导出2019年1月至2020年7月在西门子advia2400分析系统上报告的全部患者血糖信息,共计219 000条,作为本研究的无偏数据。人为引入6个偏差生成相应的有偏数据,每种偏差下用2种算法测试。进行计量学及临床评价。结果BPNN步长设置为10,全部偏差下假阳性率均在0.1%以内;MovSD的最佳步长为150,拦截限为10%,全部偏差下假阳性率为0.38%,比BPNN高0.28%。MovSD在0.5与1误差因子下全部未检出,误差因子>1之后,可检出,但MNPed偏高;而BPNN在全部偏差下MNPed均低于MovSD,两者相差最高达91.67倍。计量学溯源过程生成460 000条参考数据,采用参考数据评定BPNN模型的不确定度仅为0.078%。结论成功建立了基于BPNN算法识别检测过程随机误差的实时质控方法,模型准确度高,临床效能显著优于MovSD方法。

  • 标签: 人工智能 反向传播神经网络 随机误差 实时质控 患者数据
  • 简介:摘要:我国正处在由制造大国到制造强国、工业转型的关键时期,机械制造业要不断地进行技术革新,提高产品的质量和效率。在加工过程中,随着加工设备的不断延长,零件的磨损程度也越来越高,在加工过程中,工件发生错误的可能性也越来越大。工具、夹具的磨损、位置的偏差、加工温度的升高,都是造成这些问题的主要因素。

  • 标签: 机械加工 误差原因 防范措施