学科分类
/ 1
1 个结果
  • 简介:针对目标跟踪中非线性滤波精度下降甚至发散的问题,提出了一种时变噪声统计估计的自适应无迹卡尔曼滤波(UnscentedKalmanFiltering,UKF)算法。首先将系统模型和滤波算法修正为适于噪声非零均值时的情况,然后根据极大后验估计原理,推导出一种次优的时变噪声统计估计器,其系数通过指数加权的衰减因子计算得到,最后与传统UKF算法结合形成自适应的滤波算法。仿真结果表明,该算法保证了滤波收敛性,能够对目标进行有效跟踪,而且滤波精度显著提高。

  • 标签: 无迹卡尔曼滤波 自适应滤波 目标跟踪 时变噪声统计