简介:Microarrayhasbecomeapopularbiotechnologyinbiologicalandmedicalresearch.However,systematicandstochasticvariabilitiesinmicroarraydataareexpectedandunavoidable,resultingintheproblemthattherawmeasurementshaveinherent"noise"withinmicroarrayexperiments.Currently,logarithmicratiosareusuallyanalyzedbyvariousclusteringmethodsdirectly,whichmayintroducebiasinterpretationinidentifyinggroupsofgenesorsamples.Inthispaper,astatisticalmethodbasedonmixedmodelapproacheswasproposedformicroarraydataclusteranalysis.TheunderlyingrationaleofthismethodistopartitiontheobservedtotalgeneexpressionlevelintovariousvariationscausedbydifferentfactorsusinganANOVAmodel,andtopredictthedifferentialeffectsofGV(genebyvariety)interactionusingtheadjustedunbiasedprediction(AUP)method.ThepredictedGVinteractioneffectscanthenbeusedastheinputsofclusteranalysis.Weillustratedtheapplicationofourmethodwithageneexpressiondatasetandelucidatedtheutilityofourapproachusinganexternalvalidation.