简介:传统地,在空中的时间域电磁(ATEM)数据被转换由重复导出地球模型。然而,数据高度经常在隧道之中被相关并且因而在倒置引起提出病、在坚定上的问题。关联复杂化在ATEM数据和地球参数之间的印射的关系并且因此增加倒置复杂性。排除这,我们采用主要部件分析把ATEM数据转变成直角的主要部件(PC)减少关联和数据维数并且同时压制无关的噪音。在这份报纸,我们使用一个人工的神经网络(ANN)接近与地球模型参数印射关系的PC,避免Jacobian衍生物的计算。基于PC的ANN算法为在空中的时间域与data-basedANN相比为分层的模型被用于合成数据电磁的倒置。结果在data-basedANN上表明更简单的网络结构,更少的训练步骤,和更好的倒置结果的基于PC的ANN优点,特别为污染数据。而且,基于PC的ANN算法有效性被假2D模型和比较的倒置与data-basedANN和Zhodys方法检验。结果显示基于PC的ANN倒置能与真正的模型一起完成一个更好的协议并且也证明基于PC的ANN是可行的转换大ATEM数据集。