学科分类
/ 1
12 个结果
  • 简介:以海绵钛作可溶阳极,钛板为阴极,NaCl-KCl-TiClx混合熔盐作电解质,在电解温度为900~980℃、阴极电流密度为0.1~0.6A/cm2、初始可溶钛浓度2%~8%的条件下,电解24h制备高钛粉,研究初始可溶钛浓度对钛粉中杂质元素含量的影响,以及电流密度和初始可溶钛浓度对电流效率及钛粉形貌的影响。结果表明,钛粉杂质含量完全达到高钛粉的标准,提高初始可溶钛浓度可降低杂质含量在较高的阴极电流密度以及高的初始可溶钛浓度下电解效率较高在阴极电流密度较高时钛粉为细小的树枝状晶体,而在阴极电流密度较低时得到较粗大均匀的结晶粉体。

  • 标签: 熔盐电解 高纯钛粉 电流密度 可溶钛浓度
  • 简介:对AA1050工业铝在动态高应变速率(1.2×10^3s-1)和准静态低应变速率(1×10^-3s-1)下进行单向压缩和多向压缩加载,单向和多向压缩以相同的道次应变量进行,累计应变量分别为1.6和3.0,利用TEM观察变形后合金的微观组织与结构特征。结果表明,多向加载或/和高应变速率变形有助于金属塑性的发挥。单向压缩变形后的试样产生类似竹节状片层组织,拉长的亚晶或位错胞分布于组织内。经多向压缩变形的合金组织表现为大量近似等轴状的亚晶或位错胞,位错缠结严重。高应变速率变形过程中,动态回复受到抑制,可产生更高的位错密度,从而组织细化效果优于低应变速率变形。

  • 标签: 单向/多向压缩 应变速率 晶粒细化 位错
  • 简介:采用离散元分析软件PFC-2D对钼粉末材料的单道次等径角挤压过程从细观角度进行数值模拟,获得其变形过程中载荷、颗粒和孔隙的变化规律。模拟结果表明,等径角挤压对粉末材料具有强烈的致密化作用,且整个变形过程可以分为4个阶段:颗粒重排、初始变形、过渡变形和稳定变形。分析认为,冲头压力首先使颗粒重排减少大孔隙,之后,由于压力增大使小孔隙闭合,剪切作用使颗粒和孔隙发生变形,结合强大的静水压力使材料致密。在400℃条件下的钼粉末黄铜包套单道次挤压实验结果与模拟结果具有较好的一致性,验证了所建离散元模型的可靠性。

  • 标签: 离散元数值模拟 钼粉材料 等径角挤压 颗粒和孔隙变形
  • 简介:难熔金属由于其具有熔点高、蒸汽压低、高温强度高等特性,在武器装备、通讯、医疗等领域具有广泛应用。钨的选区激光熔化打印,可解决难熔金属传统粉末冶金在复杂形状和超细晶粒方面面临的难题。本文研究了激光能量密度对钨致密度、硬度及显微组织的影响。结果表明,随激光能量密度增大,致密度和显微硬度逐渐增大。最大致密度可达75%,显微硬度达到485HV,远远高于传统粉末冶金的方法(260HV)。打印后的显微组织为较细的等轴晶,晶粒尺寸小于1μm。

  • 标签: 能量密度 选区激光熔化 硬度 显微组织
  • 简介:采用电化学方法回收废旧电路板中的铜,以十二烷基硫酸钠(SDS)和吐温?80(Tween-80)为添加剂,制备高超细铜粉,通过四因素(电流密度、温度、SDS质量浓度和Tw-80浓度)三水平的正交实验优化工艺条件。采用等离子发射光谱分析仪、扫描电镜、X射线衍射和傅立叶红外光谱分析等对铜粉的形貌与结构进行观察与分析,并对铜粉的抗氧化性能进行测试。结果表明,最优工艺条件为:在pH值为0.5,温度为20℃的点解液中,脉冲占空比0.8、周期10ms,电流密度100mA/cm2,电解液中SDS的质量浓度为2g/L,Tween-80的体积分数为2%。制备的铜粉纯度为99.92%、平均粒度为4.9μm,其微观形貌为紧密堆积的圆形颗粒,平均晶粒尺寸为33nm,抗氧化性能良好,接近400℃温度下才开始氧化。

  • 标签: 废旧电路板 电化学方法 超细铜粉 工艺条件 微观形貌 抗氧化性能
  • 简介:基于单轴压缩实验,研究钼粉末烧结材料的塑性变形行为及其影响因素。结果表明:可压缩钼粉末烧结材料的塑性变形行为对初始相对密度、温度和应变速率的变化相当敏感,其流动应力随应变速率的增加而增加,随温度的升高而减小;高温条件下材料对应变速率不太敏感,但初始相对密度在低温状况下对流动应力的影响更甚;对压缩后试样的微观组织分析显示:初始平均粒径为44.0μm的粗大等轴晶组织经过约35%的单轴压缩后,其中心主变形区域得到平均粒径为1.45μm完全致密的超细晶组织;初始相对密度越大,材料屈服强度越低,出现破裂的时间越早;其硬度增加速率对温度变化不敏感,而提高温度则有利于降低屈服强度。

  • 标签: 纯钼粉 烧结材料 变形行为 组织 影响因素
  • 简介:采用平均粒径为800nm的超细SiC颗粒作为增强体,制备含SiC体积分数为15%的铝基复合材料,研究烧结温度和强压处理对复合材料微观组织和力学性能的影响。研究表明,提高烧结温度可有效加速复合材料的致密化,与520℃下烧结制备的复合材料相比,610℃下烧结制备的复合材料具有更高的密度和较低的孔隙度,从而具有更高的硬度。610℃下烧结制备的复合材料的硬度为83.9HBS,远高于520℃烧结制备的复合材料的硬度(53.7HBS)。这主要是由于烧结温度的提高可加速原子扩散,有利于Al粉之间以及Al粉与SiC颗粒之间的结合,并改善界面结合情况。研究还表明,强压处理可以有效提高复合材料的致密度和降低孔隙的体积分数,610℃下烧结制备的复合材料经强压处理以后的密度为2.68g/cm3,接近于理论密度(2.78g/cm3),且硬度可达121HBS,抗拉强度、屈服强度和伸长率分别可达177.6MPa、168.6MPa和3.97%。

  • 标签: AL基复合材料 超细SiC 力学性能 显微组织
  • 简介:研究了不同成分的二元系HA-Ti和三元系HA-BG-Ti复合生物材料的烧结收缩率、抗压强度、抗弯强度、微观结构、物相结构及化学成分等.结果表明:二元系HA-Ti复合材料烧结收缩率变化曲线一直呈下降趋势,从11.2%降至3.3%;三元系的烧结收缩率变化曲线呈"S"形,先降低后升高再降低(23.1%→16.2%→21.8%→17.1%),且HA-BG-Ti三元系复合材料的烧结收缩率普遍高于HA-Ti二元系的烧结收缩率.当钛含量达到50%~60%时,HA-Ti系复合材料的抗压强度达到最小值68MPa,而HA-BG-Ti系复合材料的抗压强度却达到最大值131MPa;二元系复合材料的抗弯强度停滞在40MPa左右,而三元系复合材料的抗弯强度曲线在钛含量为70%~75%时出现最大值64MPa;总体上,三元系的抗压强度和抗弯强度均高于二元系的抗压强度和抗弯强度.由于HA-BG-Ti复合材料中的HA-Ti相界面依托生物玻璃以复杂的强键相结合,HA-Ti系复合材料的HA-Ti相界面存在CaTiO3等脆性相,因而从理论上解释了HA-BG-Ti三元系复合材料的力学性能好于HA-Ti二元系复合材料的力学性能的原因.

  • 标签: HA-Ti HA-BG-Ti 生物玻璃 强化 力学性能
  • 简介:采用不同球磨介质对Ti+30%HA(质量分数)粉料进行高能球磨,随后在1000℃氩气气氛中热压,研究了球磨工艺对Ti/HA生物复合材料性能的影响.结果表明:随着球磨时间的延长,复合材料的致密度略有下降,硬度上升.热压后,Ti基体形成连通的网络,HA弥散分布于Ti基体中.干磨工艺条件下,球磨时间越长,显微组织越细;湿磨工艺条件下,较短的球磨时阍,即可达到较好的细化弥散效果.因此,采用高能球磨,可使Ti/HA生物复合材料在较低的温度下致密化.此外,湿磨介质的存在有利于在短时间内得到力学性能和生物活性较好的Ti/HA生物复合材料.

  • 标签: 生物复合材料 球磨工艺 高能球磨 力学性能 生物活性
  • 简介:采用无压熔渗工艺制备1种新型的具有自润滑耐磨性能的炭纤维整体织物/炭-铜(C/C-Cu)复合材料,分别在环-块运动模式、销-盘运动模式和往复运动模式下对该材料的摩擦磨损特性进行研究,并与粉末冶金方法制备的滑板用C/Cu复合材料进行性能比较。结果表明:C/C-Cu复合材料在不同试验模式下表现出迥异的摩擦磨损特性。往复运动模式下试样表面形成完整光滑的磨屑层,摩擦因数和磨损量均分别维持在0.02和1.70mm3的较低水平,摩擦磨损性能优于C/Cu复合材料;环-块模式下试样磨损面粗糙,摩擦因数最高,达到0.25以上,磨损量最低,仅为0.75mm3与C/Cu复合材料的摩擦磨损性能相当;销-盘模式下试样的磨损量远高于其它2种摩擦模式,最高达55mm3,摩擦磨损性能比C/Cu复合材料差。

  • 标签: C/C-CU复合材料 熔渗 摩擦磨损特性 试验模式
  • 简介:在经过碱热处理的钛表面采用溶胶.凝胶法和提拉涂覆法制备含氟羟基磷灰石(FHA).锶取代羟基磷灰石(SrHA)~相生物陶瓷涂层。采用X射线衍射检测涂层的相组成,采用扫描电镜观察涂层的形貌,采用划痕法测定涂层与基体的结合力。结果表明:所制备的涂层是均匀和致密的FHA—SrHA双相涂层;与单相FHA和SrHA涂层相比,FHA.SrHA双相涂层与钛基体的结合力明显优于SrHA涂层,略低于FHA涂层;TRIS溶液中的溶解性实验结果显示3种涂层均发生溶解和钙磷酸盐的重沉积过程,表现出良好的生物活性,但FHA.SrHA双相涂层的溶解速率远远低于单相FHA及SrHA涂层,这表明可以通过双相涂层设计来提高生物陶瓷涂层材料的植入寿命和稳定一陛。

  • 标签: 溶胶-凝胶 含氟羟基磷灰石(FHA) 锶取代羟基磷灰石(SrHA) 双相涂层 溶解性
  • 简介:采用射频磁控溅射法在医用钛表面制备羟基磷灰石(HA)涂层,研究HA涂层的形貌、物相、力学性能、细胞相容性和在机体内的组织相容性,分析其在骨修复中应用的可能性。结果表明:射频磁控溅射法制备的钛基HA生物涂层呈粗糙岛屿状结构,HA平均粒径为(40?2)nm、厚度为1.0~1.6μm的涂层力学性能最好,其纳米硬度高于11GPa,弹性模量大于136GPa;HA涂层可促进成骨细胞增殖,成骨细胞粘附于HA涂层表面并形成伪足铺展生长;植入实验动物体内4周后材料表面被结缔组织覆盖,血管形成;植入12周后,骨小梁形成,其内部可见破骨细胞;植入12周后与植入前相比,涂层的结合强度未发生显著变化。说明该HA涂层具有较高的成骨活性和稳定性,在骨修复方面具有良好的应用前景。

  • 标签: 射频磁控溅射 羟基磷灰石 涂层 生物活性