简介:关于光伏应用形式的主要争论之一,是光伏电力的逆变应用与非逆变应用之争。其实“逆变”只是电力技术中一种直流变交流的方法,逆变与非逆变的本质区别,并不在于采用该方法与否。在逆变应用中也有直流线路,非逆变应用中也有逆变装置。关键问题是,被统称为“逆变并网”的逆变应用,是推崇用光伏电力取代市电的一种思潮,并长期以来作为主流观点在光伏应用领域占统治地位。而非逆变应用就不赞成这种应用形式,并且有针对性地提出了许多不同意见,归结起来有3条:第一,不必要,因为直流电、交流电都可以应用,将直流低压的光伏电力变成高压交流电去适应普通电气应用是多余而又降低效率的环节;第二,问题复杂化,因为光伏电力的输出功率不稳定,又不采用储能装置,依附电网上的负载卸载,势必给网电造成影响,从而发生一系列技术问题和与电力部门的协调问题,人为增加了光伏电力应用的困难;第三,经济上不合算,无论如何,光伏电力成本的价格还是远高于市电。而逆变应用反驳得不太有说服力,除了第一条所说的应用方便之外,其余2条对于实际问题的解决,至今没有实质性的进展。
简介:涟漪纹管是一种新型三维内外表面强化传热管,内径11.5000mm、外径12.7000mm,管壁表面有直径为3.5000mm的半球凹坑与高度为0.1778mm的涟漪花纹。工质R22在涟漪纹管内的质量流量设定为40~90kg/h,实验结果表明,涟漪纹管内对流传热努赛尔数(Nu)是相同雷诺数(Re)下光管的2.48倍。同时,对具有不同表面参数(凹坑直径0.0000到4.0000mm,花纹高度0.0000到0.2778mm)的涟漪纹管内湍流传热进行了数值模拟,结果显示,在所研究的范围内,管壁表面凹坑直径越大,Nu越大;花纹虽有助于提高传热效果,但花纹高度越大,Nu越小;而摩擦阻力随着凹坑直径与花纹高度的增大而增大。如果以基于相同泵功的强化因子η’评价其综合强化传热性能,则当凹坑直径为1.0000mm且无花纹存在时,管内的强化传热效果最好。