简介:本文讨论应用电动机电流频谱分析的方法检测感应电动机滚动轴承的故障。目前用于检测轴承故障工况的方法是监测轴承的机械振动频率。由于这些机械振动与电机气隙变化有关,所以对气隙磁通密度进行调节,产生的定子电流频率也可预测,这种频率是与电源频率和振动频率有关。本文首先研讨电流监测对轴承故障检测的效果,其方法是在轴承初期故障引起的振动频率和电流频率之间建立联系。对轴承故障的型式进行了考察,确定了与轴承具体结构有关的轴承特征频率。叙述了对定子电流频谱的影响,确定了相关的频率。在设计监测定子电流的故障检测图方面,这是一项重要的结果。测试结果显示了具有各种轴承故障的感应电机振动和电流频谱,它们可用来验证振动频率与电流频率之间存在的关系。测试结果清楚地表明定子电流波形可用来识别轴承故障的存在与否。
简介:电网合解环操作是调度运行管理的一个重要环节,在实际运行中,需重点分析与调控。为解决同一系统短时环网存在的合环开关处无电流、合环开关处电流小于10A及环网内其他开关电流无明显变化的问题,研究了基于分布系数法的环网潮流计算,通过对不同变电所投停电容器改变无功潮流分布,将不同方式下节点负荷乘以分布系数后叠加作为电源支路的潮流,然后求出其他支路的潮流,最终确定环网内合环电流变化明显的调控措施,以方晓一次变系统35kV西一二线合环构成的短时环网为例,对各种方式进行了对比计算。结果表明:在西一变停用电容器后,合环开关处有明显电流,能够进行成功的合解环操作,并对类似接线结构的变电所进行了计算,为调度员指挥操作提供理论依据,确保了油田电网安全可靠运行。
简介:超短期风速预测对风电场功率预报系统的建立和运行至关重要。针对具有较大随机波动性的风速预测,研究了一种基于误差修正的极端学习机(ELM)超短期风速预测方法。利用ELM模型对风速进行初步预测,并利用由此得到的误差数据样本建立差分自回归滑动平均模型(ARIMA),进行误差预测,最后使用预测误差对风速的初步预测值进行补正,从而求得最终预测值。仿真实验结果表明,该方法在风速超短期预测中的可行性及有效性。
简介:众所周知,电动机电流是一种不稳定信号,其特性随电动机的随时间变化的正常工况而变化,结果,傅立叶分析难以将电动机的正常工况与故障工况区别开来,另一方面,时间-频率分析法清楚地显示了在变换域中,使与故障检测相关信号特性更明显的电动机电流,在本文中,我们提出了一个自适应的检测断条和轴承损坏的时间-频率统计法,由于电动机随时间变化的正常工况以及电动机几何结构对于电流的影响,我们使用了一种以训练为基础的方法,使用该方法,在实际的测试开始之前为来训练识别电动机的正常运行方式的算法。在训练阶段,利用转矩和机械转速估计来估计与故障检测有关的特性,然后,对这些特性进行统计分析,并将它们划分成电动机的几种正常运行方式,对于每一种方式要计算一个有代表性值和界定值,而后将其存入数据库,以用作测试阶段的基础,在测试阶段,要计算测试特性与模态代表值的距离,并将其与界定值进行比较,如果它比所有的界定值大,该测量值就称作为一个潜在的损坏信号,在后处理阶段,为了有多个测量值,该测试被反复进行,以提高检测的精度。从我们的研究中得到的实验结果表明,所推荐的方法提供了以电动机-电流为基础的故障探测的强有力的通用手段。