简介:将分支前馈神经网络(BFNN)运用于数字字符的模式识别问题中,其某些性能优于标准反向传播(BP)网络。BFNN的隐层神经元与输出神经元之间为分组对应关系,采用的学习算法与标准BP算法类似。BFNN可以根据样本的可分性构建最适宜的网络结构。在对大规模、分类复杂的样本进行识别时,性能优于标准BP网络。
简介:针对传统智能算法在无限脉冲响应(IIR)数字滤波器设计面临的收敛速度较慢和容易陷入局部极值等问题,提出了一种基于猫群优化算法的IIR数字滤波器设计方法。猫群优化算法分为搜寻模式和跟踪模式,通过对猫群行为的观察,改进猫群的行为模式并利用该算法设计IIR数字滤波器,经过与利用粒子群算法与自由搜索算法设计的滤波器进行比较,证明用本文算法设计的数字滤波器有更好的效果。