简介:制备了以Al2O3/TiO2为载体的负载型铁氧化物催化剂,对催化剂进行SEM、XRD、UV—vis—DRS和XPS分析,考察H2O2投加量、催化剂投加量、4-氯酚初始质量浓度对4-氯酚处理效果的影响,分析了非均相光Fenton体系的氧化机理。结果表明,所制备的负载型铁氧化物催化剂为α—FeOOH与γ-Fe2O3的混合物,其表面存在较多的颗粒和孔穴,吸附性强,具有很高的催化活性。H2O2、铁氧化物催化剂、紫外灯之间存在协同作用,所构成的非均相光Fenton体系对4-氯酚具有良好的去除效果。其反应机理为表面催化,催化剂表面的№(III)在光照的作用下被还原为Fe(II)。在催化剂投加量为1g/L,H2O,浓度为7.84mmol/L时,对4-氯酚的降解效果达到最佳,反应进行30min后4-氯酚的去除率大于99%,反应1h矿化度可达91.4%。
简介:再生水补给河流是解决城市景观用水缺乏的重要途径,但是再生水中的氨氮,特别是游离氨对水生生物的毒害作用也不容忽视。针对再生水补给河流的典型场景,根据物种敏感度分布法(SpeciesSensitivityDistribution,SSD),计算得到游离氨的属急性毒性基准最大质量浓度(CriterionMaximumConcentration,CMC)为0.093mg/L。以保护95%水生生物为目标的河水氨氮控制目标分别为4.37mg/L(水温T≤12℃)和1.73mg/L(水温T〉12℃)。根据再生水补给河流的不同比例(体积比),计算再生水的氨氮控制目标。当河流上游来水分别满足地表水环境质量标准Ⅳ、Ⅴ类水体要求和CMC值,再生水占混合后河水的比例为20%-100%且水温T〉12℃时,再生水氨氮控制目标分别为1.7-2.6mg/L、0.6-1.7mg/L和1.7mg/L;当河流上游来水分别满足Ⅳ、Ⅴ类水体要求,再生水占混合后河水的比例为50%-100%且水温T≤12℃时,再生水氨氮控制目标分别为4.4-7.2mg/L和4.4-6.7mg/L。当河水全部由再生水组成时,推荐再生水的氨氮控制目标为1.7mg/L(水温T〉12℃)和4.4mg/L(水温T≤12℃)。
简介:三氯杀螨醇生产工艺流程主要包括缩合、碱解、氯化和水解等步骤。对工作场所中空气样品、生产过程排放的废酸及废水样品进行采集和分析。工作场所空气中DDT总质量浓度均值为6.69×10-3mg/m3。其中,碱解反应工序中质量浓度水平较低,为1.10×10-3mg/m3;包装车间质量浓度水平较高,为16.72×10-3mg/m3。所有空气样品中p,p’-DDE均是主要贡献物质,占DDT杂质总量的80.2%;p,p’-DDT的质量浓度范围为0.053×10-3-1.66×10-3mg/m3,平均为0.49×10-3mg/m3,低于国家标准限值。缩合废酸与水解废酸中DDT杂质总质量比分别为4.84μg/kg和334.83μg/kg;碱解废水与水解废水中的DDT杂质总质量比分别为456.48μg/kg和75.65μg/kg。废水及废酸样品中各种DDT杂质的质量比水平存在差异;生产工艺阶段不同,杂质组成也各具特点。水解废酸的p,p’-DDT的质量比最高,为146.82μg/kg;缩合废酸与水解废水处质量比水平较低,分别为0.33μg/kg和1.41μg/kg。该企业随废水及废酸排放的DDT杂质总量为1234.08g/a,其中随碱解废水的排放量高达912.95g/a。p,p’-DDT的年排放总量为163.37g/a,随碱解废水和水解废酸的排放量分别为86.98g/a和73.41g/a。
简介:为研究氨排放对冬季PM_(2.5)中二次无机盐的影响,设置不同排放情景,应用CMAQ模式对华北地区典型城市——保定冬季无机盐进行了模拟研究。结果表明:将氨气在模式中排放置零的情景下,无机盐质量浓度降低了67.08%;氨排放削减与二次无机盐生成呈非线性关系,大气呈“氨限制”状态;氨排放削减能够有效抑制二次无机盐的生成,当削减幅度为50%时无机盐总体降幅达29.89%,其中硝酸盐、铵盐和硫酸盐降幅分别为53.78%、27.87%和5.64%;氨排放对重污染时段二次无机盐的生成贡献较高,当氨削减幅度为50%时无机盐总体降低40.58%;在当前大气环境下,氨排放削减是保定市冬季控制二次无机盐污染的重要途径。
简介:以天然高分子材料壳聚糖为絮凝剂,通过絮凝试验和MBR处理人工废水试验,考察了壳聚糖絮凝作用延缓膜污染的效果。壳聚糖絮凝处理MBR中污泥混合液的试验结果表明,壳聚糖投加质量浓度分别为10mg/L、20mg/L、30mg/L、40mg/L、50mg/L时,能明显降低污泥混合液SUV254的质量浓度,对污泥脱氢酶活性(DHA)的影响也较小;壳聚糖投加质量浓度为10~20ng/L时,能有效降低污泥混合液的EPS质量浓度和黏度;当壳聚糖投加质量浓度大于20mg/L时,污泥混合液的EPS质量浓度和黏度随着投加量的增加呈现增大的趋势,说明壳聚糖投加质量浓度低于20mg/L时,能有效降低污泥混合液中的主要膜污染物质EPS及疏水性物质的质量浓度。壳聚糖投加质量浓度为10mg/L时,MBR反应器的跨膜压力增大的同时,处理系统的膜通量也稳定增大。膜通量衰减速度低于对照组,说明壳聚糖对延缓和控制膜污染有积极的作用。MBR反应器中活性污泥质量浓度(MLSS)和出水CODCr的变化表明,投加壳聚糖在提高反应器中微生物量的同时也增加了处理水中有机物的质量浓度。