简介:摘要目的了解长沙市职业病发病情况,预测其发病趋势,为制定职业病防控策略与措施提供理论依据。方法于2019年4月,收集长沙市2010-2018年职业病发病数据,建立原始GM(1,1)灰色模型和缓冲算子优化模型,比较其预测效果。选取平均相对误差最小的模型预测2019-2023年长沙市职业病发病情况。结果原始GM(1,1)灰色模型及一阶、二阶缓冲算子优化模型的相对精度分别为80.92%、97.71%、99.64%(c=0.74、0.28、0.09,P=0.67、1.00、1.00);预测2019-2023年长沙市职业病发病例数分别为40、39、39、38、37例。结论缓冲算子优化模型适用于波动性较大的原始数据序列的预测,可较好地拟合长沙市职业病发病情况。
简介:摘要目的设计一种联合深度学习剂量预测和参数迭代优化算法的容积调强放射治疗(VMAT)全自动计划方法。方法选取2018年6月至2021年1月北京大学肿瘤医院既往165例直肠癌患者的VMAT计划开展研究,其中145例用于训练和验证深度学习模型,该模型用于预测危及器官的剂量,20例用于研究比对自动计划和人工计划的质量。该方法从危及器官的预测剂量分布中提取关键的剂量体积直方图(DVH)值作为初始优化参数(IOPs),利用治疗计划系统可编程接口自动创建VMAT计划,通过设计迭代优化算法自动调节优化参数(OPs)。结果剂量预测模型训练后能有效预测出20例测试计划危及器官的关键DVH值,与参考值相比差异均无统计学意义(P> 0.05)。20例VMAT自动计划均能满足临床处方剂量要求,对于PTV和PGTV的适形性指数(CI),人工计划与自动计划比较差异均无统计学意义(P> 0.05);而PGTV的D1和均匀性指数(HI),自动计划均高于人工计划,分别为0.6 Gy和0.01,两者比较差异均有统计学意义(t=-7.05、-6.92,P<0.05)。自动计划比人工计划的膀胱平均V30下降2.7%(t=3.37,P< 0.05),股骨头和危及器官辅助结构(Avoidance)的平均V20分别下降8.37%和15.95%(t=5.65、11.24,P< 0.05),并且膀胱、股骨头、Avoidance的平均剂量分别降低了1.91、4.01和3.88 Gy(t=9.29、2.80、10.23,P< 0.05)。测试的20例直肠癌患者病例的自动计划平均时间为(71.82±25.48)min。结论本研究利用直肠癌病例验证了一种联合剂量预测和参数迭代优化算法的VMAT自动计划方法的可行性。相比于人工计划,VMAT自动计划无需人工干预,在提高计划设计效率、计划质量和临床资源利用率等方面有很大的应用潜力。
简介:摘要目的基于随机森林算法构建儿童重症腺病毒肺炎(severe adenovirus pneumonia,SAP)的临床预测模型,并对其进行验证。方法采用观察性研究设计,回顾性分析2019年1月至2021年1月天津市儿童医院收治的542例腺病毒肺炎患儿的临床、实验室及影像学资料。将研究对象随机分为训练集和验证集(8∶2)。训练集通过随机森林算法筛选SAP的预测因子建立预测模型,并通过列线图将预测模型可视化表达。在验证集中利用受试者工作特征(ROC)曲线和敏感性、特异性、误判率、混淆矩阵对其进行验证。结果训练集患儿439例,其中重症型187例(42.60%),验证集患儿103例,其中重症型44例(42.71%)。训练集中单核细胞百分比(M%)、PLT、AST、IL-6、热峰、肺部大片炎性实变、肺部斑片状阴影是影响SAP的独立预测因子。模型区分度验证发现训练集和验证集的ROC曲线下面积分别为0.95(95%CI:0.92~0.98)和0.92(95%CI:0.82~0.99)。训练集的准确度、灵敏度、特异性、阳性预测值和阴性预测值分别为0.994、1.000、0.987、0.998、1.000;验证集的分别为0.752、0.990、0.514、0.945、0.857。结论该预测模型具有较好的判别能力,早期的临床及血液学指标有助于提高儿童SAP的识别和筛选,具有一定的临床价值。
简介:摘要目的比较多种机器学习算法在早期肝细胞癌(HCC)术后复发预测中的效能。方法回顾性分析2009年5月至2019年12月南京医科大学第一附属医院收治的882例接受根治性手术切除的早期HCC患者的临床资料,其中男性701例,女性181例,年龄(57.3±10.5)岁(范围:21~86岁)。将患者按2∶1随机分为训练集(588例)和测试集(294例)。构建的机器学习预测模型包括随机生存森林(RSF)、梯度提升机、弹性网络-Cox回归和Cox回归模型。采用一致性指数(C-index)衡量模型预测的准确性、综合Brier分数量化模型的预测误差、校准曲线反映模型的拟合情况。比较机器学习模型、竞争模型和HCC分期系统的预测效能。所有模型均在独立的测试集内进行验证。结果训练集内患者中位无复发生存时间为61.7个月,测试集内患者中位无复发生存时间为61.9个月,两组患者无复发生存情况的差异无统计学意义(χ²=0.029,P=0.865)。RSF模型由5个常用临床病理学特征构成:白蛋白-胆红素分级、血清甲胎蛋白、肿瘤数目、肝切除方式和微血管侵犯。在训练集和测试集中,RSF模型的C-index值分别为0.758(95%CI:0.725~0.791)和0.749(95%CI:0.700~0.797),综合Brier分数分别为0.171和0.151。RSF模型对早期HCC复发预测的准确性优于其他3种机器学习模型、竞争模型(ERASL模型)及HCC分期系统(巴塞罗那分期、中国肝癌的分期方案、TNM分期),差异均有统计学意义(P值均<0.01)。校准曲线提示,RSF模型的预测概率与实际观察值具有较好的一致性。RSF模型可将早期HCC患者的复发风险分为低危、中危和高危组,在训练集和测试集内三组患者无复发生存情况的差异有统计学意义(P<0.01)。RSF模型对早期HCC术后复发风险的分层明显优于TNM分期。结论本研究构建的RSF模型集合了5个常用临床病理学特征,可较为准确地预测复发风险。
简介:摘要目的基于机器学习算法构建3种不同的经外周静脉置入中心静脉导管(PICC)相关性血栓风险预测模型,并比较模型性能,为评估及预防PICC相关性血栓提供依据。方法基于最佳证据和专家函询形成PICC相关性血栓风险因素调查表。采取便利抽样法,选取2016年1月—2020年10月在江苏大学附属医院行PICC置管的626例患者为研究对象收集临床资料,基于机器学习算法,分别采用支持向量机(SVM)、XGBoost和Logistic回归方法构建3种不同的PICC相关性血栓风险预测模型,并进行评价和比较。模型评价指标包括马修斯相关系数(MCC)、F1分数、受试者工作特征曲线下面积(AUC)及Brier得分。结果共30个变量纳入研究,预测因子包括患者的人口学资料、患者病情、治疗因素、导管相关性因素4个方面。测试集上验证后的模型,在MCC、F1分数上,Logistic回归预测模型得分低于XGBoost、SVM预测模型;在AUC上,Logistic回归预测模型得分等于SVM,小于XGBoost;在Brier得分上,Logistic回归预测模型得分高于XGBoost、SVM预测模型。结论基于机器学习算法XGBoost、SVM预测模型性能在敏感性及准确性上优于传统Logistic回归模型。血栓预测因子有助于指导临床医务人员识别高风险患者,降低PICC相关性血栓发生率。
简介:摘要目的探讨机器学习算法在肝细胞癌微血管侵犯(MVI)术前预测中的应用价值。方法采用回顾性描述性研究方法。收集2015年5月至2018年12月福建医科大学孟超肝胆医院收治的277例肝细胞癌患者的临床病理资料;男235例,女42例;年龄为(56±10)岁,年龄范围为33~80岁。患者术前均行磁共振成像检查。227例肝细胞癌患者通过计算机产生随机数方法以7∶3比例分为训练集193例和验证集84例。应用逻辑回归列线图,支持向量机(SVM)、随机森林(RF)、人工神经网络(ANN)和轻量级梯度提升机(LightGBM)机器学习算法构建MVI术前预测模型。观察指标:(1)训练集及验证集患者临床病理资料分析。(2)影响训练集患者肿瘤MVI危险因素分析。(3)机器学习算法预测模型构建及其术前预测肿瘤MVI准确性比较。正态分布的计量资料以±s表示,组间比较采用配对t检验。计数资料以绝对数表示,组间比较采用χ2检验。单因素和多因素分析采用Logistic回归模型。结果(1)训练集及验证集患者临床病理资料分析:训练集和验证集患者性别(男,女)分别为157、36例和78、6例,两组比较,差异有统计学意义(χ2=6.028,P<0.05)。(2)影响训练集患者肿瘤MVI危险因素分析:训练集193例患者中,MVI阳性108例,MVI阴性85例。单因素分析结果显示:年龄、肿瘤数目、肿瘤直径、卫星病灶、肿瘤边界、甲胎蛋白(AFP)、碱性磷酸酶(ALP)和纤维蛋白原水平是影响肿瘤MVI的相关因素(比值比=0.971,2.449,1.368,4.050,2.956,4.083,2.532,1.996,95%可信区间为0.943~1.000,1.169~5.130,1.180~1.585,1.316~12.465,1.310~6.670,2.214~7.532,1.016~6.311,1.323~3.012,P<0.05)。多因素分析结果显示:AFP>20 μg/L、肿瘤多发、肿瘤直径越大、肿瘤边界不光滑是影响肿瘤MVI的独立危险因素(比值比=3.680,3.100,1.438,3.628,95%可信区间为1.842~7.351,1.334~7.203,1.201~1.721,1.438~9.150, P<0.05),而年龄越大,MVI发生风险越低(比值比=0.958,95%可信区间为0.923~0.994,P<0.05)。(3)机器学习算法预测模型构建及其术前预测肿瘤MVI准确性比较:①应用多因素分析结果筛选指标,包括年龄、AFP、肿瘤数目、肿瘤直径、肿瘤边界,构建逻辑回归列线图,SVM、RF、ANN及LightGBM机器学习算法预测模型,一致性分析结果显示逻辑回归列线图预测模型稳定性较好。逻辑回归列线图、SVM、RF、ANN、LightGBM机器学习算法预测模型训练集和验证集曲线下面积(AUC)分别为0.812、0.794、0.807、0.814、0.810和0.784、0.793、0.783、0.803、0.815,SVM、RF、ANN、LightGBM机器学习算法AUC分别与逻辑回归列线图AUC比较,差异均无统计学意义[(95%可信区间为0.731~0.849,0.744~0.860,0.752~0.867,0.747~ 0.862,Z=0.995,0.245,0.130,0.102,P>0.05)和(95%可信区间为0.690~0.873,0.679~0.865,0.702~0.882,0.715~ 0.891,Z=0.325,0.026,0.744,0.803,P>0.05)]。②应用RF、LightGBM机器学习算法自行筛选临床病理因素指标构建预测模型。根据指标对预测模型重要度排序,选择重要度>0.01的指标,包括年龄、肿瘤直径、AFP、白细胞(WBC)、血小板、总胆红素、天冬氨酸氨基转移酶、γ-谷氨酰转移酶、ALP和纤维蛋白原,构建RF机器学习算法预测模型;挑选重要度>5.0的指标,包括年龄、肿瘤直径、AFP、WBC、ALP和纤维蛋白原,构建LightGBM机器学习算法预测模型;由于ANN及SVM机器学习算法不具备筛选指标能力,应用单因素分析结果筛选指标,包括年龄、肿瘤数目、肿瘤直径、卫星病灶、肿瘤边界、AFP、ALP和纤维蛋白原水平,构建SVM、ANN机器学习算法预测模型。SVM、RF、ANN、LightGBM机器学习算法预测模型训练集和验证集AUC分别为0.803、0.838、0.793、0.847和0.810、0.802、0.802、0.836,分别与逻辑回归列线图AUC比较,差异均无统计学意义[(95%可信区间为0.740~0.857,0.779~0.887,0.729~0.848,0.789~0.895,Z=0.421,0.119,0.689,1.517,P>0.05)和(95%可信区间为0.710~0.888,0.700~0.881,0.701~0.881,0.740~0.908,Z=0.856,0.458,0.532,1.306,P>0.05)]。结论机器学习算法可用于术前预测肝细胞癌MVI,但其应用价值尚需多中心大样本数据进一步验证。
简介:摘要目的分析云南省布鲁菌病(简称布病)流行特征,建立灰色GM(1,1)模型,预测云南省布病病情。方法收集中国疾病预防控制信息系统和云南省统计局2008 - 2018年云南省布病疫情数据和人口资料,分析布病流行病学特征(包括时间、地区、人群分布),并以灰色GM(1,1)模型进行建模,预测2019、2020年云南省布病发病率。结果2008 - 2018年云南省共报告布病病例1 216例,年均发病率为0.237 4/10万,呈逐年递增趋势(χ2趋势 = 843.34,P < 0.01)。病例报告主要集中在3 - 9月份,占总病例数的69.41%(844/1 216)。病例报告数居前5位的州市分别为红河州(289例)、曲靖市(264例)、昆明市(258例)、大理州(160例)、玉溪市(134例),占总病例数的90.87%(1 105/1 216)。职业以农民为主,占79.03%(961/1 216)。建立灰色GM(1,1)模型预测2019、2020年云南省布病发病率分别为0.487 6/10万和0.481 7/10万。结论云南省布病发病较以往上升,应对重点地区、重点人群进行针对性防控,并对预测结果进行前瞻性评价,逐步完善云南省布病预测模型。
简介:摘要目的探讨机器学习算法和COX列线图在肝细胞癌术后生存预测中的应用价值。方法采用回顾性描述性研究方法。收集2012年1月至2017年1月中国医学科学院北京协和医学院肿瘤医院收治的375例肝细胞癌行根治性肝切除术患者的临床病理资料;男304例,女71例;中位年龄为57岁,年龄范围为21~79岁。375例患者通过计算机产生随机数方法以8∶2比例分为训练集300例和验证集75例,应用逻辑回归、支持向量机、决策树、随机森林、人工神经网络机器学习算法构建肝细胞癌患者术后生存的预测模型,筛选性能最优的机器学习算法预测模型;构建肝细胞癌患者术后生存预测的COX列线图预测模型;比较最优机器学习算法预测模型和COX列线图预测模型预测肝细胞癌患者术后生存的性能。观察指标:(1)训练集与验证集患者临床病理资料分析。(2)训练集与验证集患者随访及生存情况。(3)机器学习算法预测模型构建及验证。(4)COX列线图预测模型构建及验证。(5)随机森林机器学习算法预测模型与COX列线图预测模型预测性能评价。采用门诊或电话方式进行随访,了解患者生存情况。随访时间截至2019年12月或患者死亡。正态分布的计量资料以±s表示,组间比较采用配对t检验。偏态分布的计量资料以M(P25,P75)或M(范围)表示,组间比较采用Mann-Whitney U检验。计数资料以绝对数表示,当Tmin≥5,N≥40时,组间比较采用χ2检验;当1≤Tmin≤5,N≥40时,采用校正χ2检验;当Tmin<1或N<40时,采用Fisher确切概率法。采用Kaplan-Meier法计算生存率和绘制生存曲线。采用COX比例风险模型进行单因素分析,将P<0.2的变量纳入Lasso回归分析,根据λ值筛选影响预后的变量,最后将变量纳入COX比例风险模型进行多因素分析。结果(1)训练集与验证集患者临床病理资料分析:训练集和验证集患者微血管侵犯(无、有),肝硬化(无、有)分别为292、8例,105、195例和69、6例,37、38例,两组患者比较,差异均有统计学意义(χ2=4.749,5.239,P<0.05)。(2)训练集与验证集患者随访及生存情况:训练集与验证集患者均获得随访。训练集300例患者随访时间为1.1~85.5个月,中位随访时间为50.3个月。验证集75例患者随访时间为1.0~85.7个月,中位随访时间为46.7个月。375例肝细胞癌患者术后1、3年总体生存率分别为91.7%、79.5%。训练集和验证集患者术后1、3年总体生存率分别为92.0%、79.7%和90.7%、81.9%。两组患者术后生存情况比较,差异无统计学意义(χ2=0.113,P>0.05)。(3)机器学习算法预测模型构建及验证。①筛选最优机器学习算法预测模型:根据变量对预测肝细胞癌术后3年生存的信息增益度,应用逻辑回归、支持向量机、决策树、随机森林和人工神经网络5种机器学习算法对肝细胞癌临床病理因素进行变量综合排名。筛选主要预测因素为乙型肝炎e抗原(HBeAg)、手术方式、肿瘤最大直径、围术期输血、肝被膜侵犯、肝脏Ⅳ段侵犯。将预测因素前3、6、9、12、15、18、21、24、27、29个变量依次引入5种机器学习算法。其结果显示:当引入9个变量时,逻辑回归、支持向量机、决策树、随机森林机器学习算法预测模型受试者工作特征曲线的曲线下面积(AUC)趋于稳定。当引入变量>12个时,人工神经网络机器学习算法预测模型AUC波动明显,逻辑回归、支持向量机机器学习算法预测模型AUC稳定性可继续改善,而随机森林机器学习算法预测模型AUC接近0.990,说明随机森林机器学习算法预测模型为最优机器学习算法预测模型。②随机森林机器学习算法预测模型优化和验证:将预测因素29个变量依次引入随机森林机器学习算法预测模型中,构建训练集最佳随机森林机器学习算法预测模型。其结果显示:当引入变量=10个时,网格搜索法示最佳决策树结点个数=4,最佳决策树数目=1 000;当引入变量≥10个时,随机森林机器学习算法预测模型AUC稳定在0.990左右。其中当引入变量=10个时,随机森林机器学习算法预测模型预测训练集术后3年总体生存AUC为0.992,灵敏度为0.629,特异度为0.996,预测验证集术后3年总体生存AUC为0.723,灵敏度为0.177,特异度为0.948。(4)COX列线图预测模型构建及验证。①训练集患者术后生存因素分析。单因素分析结果显示:HBeAg、甲胎蛋白、围术期输血、肿瘤最大直径、肝被膜侵犯、肿瘤分化程度是影响肝细胞癌患者术后生存的相关因素(风险比=1.958,1.878,2.170,1.188,2.052,0.222,95%可信区间为1.185~3.235,1.147~3.076,1.389~3.393,1.092~1.291,1.240~3.395,0.070~0.703,P<0.05)。将P<0.2的临床病理因素纳入Lasso回归分析,其结果显示:性别,HBeAg,甲胎蛋白,手术方式,围术期输血,肿瘤最大直径,肿瘤位置在肝脏Ⅴ段和肝脏Ⅷ段,肝被膜侵犯,肿瘤分化程度(高分化、中高分化、中分化、中低分化)是影响肝细胞癌患者术后生存的相关因素。进一步将上述临床病理因素纳入多因素COX回归分析,其结果显示:HBeAg、手术方式、肿瘤最大直径是肝细胞癌患者术后生存的独立影响因素(风险比=1.770,8.799,1.142,95%可信区间为1.049~2.987,1.203~64.342,1.051~1.242,P<0.05)。②COX列线图预测模型的构建和验证:将训练集COX多因素分析结果中P≤0.1的临床病理因素引入Rstudio软件及其rms软件包,构建训练集COX列线图预测模型。COX列线图预测模型预测术后总体生存的C-index为0.723(se=0.028),预测训练集术后3年总体生存AUC为0.760,预测验证集术后3年总体生存AUC为0.795。训练集校准图验证显示COX列线图预测模型对术后生存有较好预测效果。COX列线图回归函数=0.627 06×HBeAg(正常=0,异常=1)+0.134 34×肿瘤最大直径(cm)+2.107 58×手术方式(腹腔镜=0,开腹手术=1)+0.545 58×围术期输血(无输血=0,输血=1)-1.421 33×高分化(非高分化=0,高分化=1)。计算所有患者COX列线图风险评分,应用Xtile软件寻找COX列线图风险评分最佳阈值,风险评分≥2.9分为高危组,风险评分<2.9分为低危组。Kaplan-Meier总体生存曲线结果显示:训练集低危组和高危组患者术后总体生存比较,差异有统计学意义(χ2=33.065,P<0.05)。验证集低危组和高危组患者术后总体生存比较,差异有统计学意义(χ2=6.585,P<0.05)。进一步采用决策曲线分析结果显示:联合HBeAg、手术方式、围术期输血、肿瘤最大直径和肿瘤分化程度因素的COX列线图预测模型预测性能优于单一因素的预测性能。(5)随机森林机器学习算法预测模型和COX列线图预测模型预测性能评价:通过对2种模型中共同含有的重要变量(肿瘤最大直径)进行分析,并将2种模型通过预测误差曲线进行比较,观察2种模型的预测差异。其结果显示:肿瘤最大直径为2.2 cm时,随机森林机器学习算法和COX列线图预测模型预测患者术后3年生存率分别为77.17%和74.77%(χ2=0.182,P>0.05);肿瘤最大直径为6.3 cm时,随机森林机器学习算法和COX列线图预测模型预测患者术后3年生存率分别为57.51%和61.65%(χ2=0.394,P>0.05);肿瘤最大直径为14.2 cm时,随机森林机器学习算法和COX列线图预测模型预测患者术后3年生存率分别为51.03%和27.52%(χ2=12.762,P<0.05)。随着肿瘤最大直径增加,2种模型预测患者生存率差异增大。验证集中,随机森林机器学习算法预测模型预测患者术后3年总体生存AUC为0.723,COX列线图预测模型预测患者术后3年总体生存AUC为0.795,两者比较,差异有统计学意义(t=3.353,P<0.05)。采用Bootstrap交叉验证结果显示:随机森林机器学习算法预测模型和COX列线图预测模型预测3年生存的整合Brier得分分别为0.139、0.134,COX列线图预测模型预测误差低于随机森林机器学习算法预测模型。结论与机器学习算法预测模型比较,COX列线图预测模型预测肝细胞癌术后3年生存性能更佳,且其变量少,易于临床使用。
简介:摘要目的探讨人工智能算法模型在创伤患者下肢静脉血栓栓塞症(VTE)诊断中的预测效能。方法回顾性收集1992年12月至2017年11月中国人民解放军总医院信息系统数据库中骨折手术患者资料,共15 856例。按照患者有无血栓将其分组,并进行数据预处理和特征提取。选择随机森林(RF)、贝叶斯(Bayes)、决策树(DTC)及梯度提升树(GBDT)4种常用算法构建VTE风险预测模型,根据院内患血栓与否进行随机分层抽样,将原始数据按8∶2的比例分为训练集和测试集。通过比较上述方法中受试者工作特征曲线(ROC)下面积(AUC)、真阳性率(TPR)和精确度,评估不同模型在VTE临床诊断中的效能。根据研究特征在模型中的贡献程度进行重要特征排序,筛选VTE的重要预测特征。结果RF、Bayes、DTC和GBDT模型AUC分别为0.89,0.86,0.68,0.71,TPR分别为0.29,0.44,0.38,0.66,精确度分别为0.97,0.94,0.95,0.76;其中RF模型AUC最大,精确度最高。对各VTE人工智能预测模型的重要特征分析表明,血栓病史可以作为不良结局的首要预测因素。RF模型重要临床特征排序为:血栓病史、依诺肝素钠注射液剂量、最后一次葡萄糖测定结果、术后首次葡萄糖测定结果等。结论RF模型在创伤患者VTE风险预测中的精确度最高,能够为VTE预防策略制订提供参考依据。
简介:摘要目的评价上海市居民健康状况,测算健康期望寿命,分析影响居民健康相关因素,为卫生决策提供有力的信息和依据。方法采用多阶段分层随机抽样方法随机抽取上海市≥18岁户籍居民作为调查对象,采用WHO在世界健康调查中使用的自评健康调查问卷,进行居民自评健康状况调查。应用CHOHT模型校正自评健康调查数据,获得人群自报伤残测度,结合上海市居民出生、死亡和人口资料编制人口寿命表计算期望寿命,采用Sullivan法测算居民健康期望寿命。结果2017年上海市≥18岁成年人自评伤残测度为0.25,女性(0.28)高于男性(0.23);≥18岁成年人期望寿命为65.76岁,女性(68.22岁)高于男性(63.39岁);≥18岁成年人健康期望寿命为47.99岁,男性(49.05岁)高于女性(47.14岁);健康期望寿命在期望寿命中的比例随年龄增加逐渐降低,18岁组居民健康期望寿命占期望寿命比例为72.97%,至85岁组仅为39.00%。结论上海市成年人男性健康水平高于女性,随着年龄增加健康期望寿命损失占期望寿命的比例越来越高。应重视提高女性、老龄等人群的生存质量,提升对影响居民寿命质量的慢性病等重大疾病防控,加强重点人群的长期照护及健康支持体系,提升居民健康水平和生活质量。
简介:摘要随着计算机技术和网络技术的飞速发展,我们每天都要对数据进行高频率的访问。数据通常都是被存在数据库中的,如果每次访问都需要从数据库中查询,这样会对数据库造成极大的压力,缓存机制很好地解决了这个问题。缓存机制是计算机内部一项十分重要的数据运行机制,缓存方式设计的好坏直接影响到计算机存取数据的速度,页面置换算法就是缓存机制很好的体现。本文主要介绍了页面置换算法的思想,重点介绍了三种页面置换算法的实现原理及置换过程,并且对比不同页面置换算法的优缺点。我们在选择使用某种算法时,要了解该算法是否适合我们的需求和业务场景,这样才能够较好地合理地使用算法。
简介:摘要目的探讨应用智能计算(IC)法对住院患者进行风险评估的准确性,旨在构建更具优势的住院风险评估系统。方法以天津市第五中心医院医院信息系统(HIS)为平台研发"搜索引擎"程序,自动抓取患者信息,应用IC法自动生成营养风险筛查2002量表(NRS 2002)评分、评估静脉血栓栓塞症(VTE)风险的Caprini评分和Padua评分、房颤脑卒中危险分层管理评分(CHA2DS2-VASc评分)以及房颤患者抗凝出血风险评分(HAS-BLED评分)。采用随机对照研究方法,按照各项评分适用条件,分别随机选取100例次应用IC法进行评分,定义为IC组;用与上述例次对应的同一患者相同时间的资料进行人工评分,定义为传统计算(TC)组。绘制Bland-Altman散点图分析两种方法计算各风险评分的一致性,比较两组评分消耗时间的差异。结果两组评分Bland-Altman散点图显示,NRS 2002评分、Caprini评分、Padua评分、CHA2DS2-VASc评分和HAS-BLED评分的95%一致性界限(95%LoA)分别为-0.46~0.41、-0.49~0.52、-0.50~0.41、-0.67~0.60、-0.44~0.43分,均P>0.05。在NRS 2002评分、Caprini评分、Padua评分、CHA2DS2-VASc评分和HAS-BLED评分中,分别有95%、96%、97%、97%、95%的点落在各自95%LoA内,且所有95%LoA内点均在临床可信区间内(-0.5~0.5分)。IC组计算NRS 2002评分、Caprini评分、Padua评分、CHA2DS2-VASc评分和HAS-BLED评分所消耗时间均明显短于TC组〔分别为0.72(0.71,0.73)s比361.02(322.41,361.02)s,0.72(0.72,0.73)s比196.68(179.99,291.20)s,0.72(0.72,0.73)s比105.75(92.32,114.70)s,0.72(0.71,0.72)s比72.66(56.24,84.20)s,0.72(0.71,0.72)s比51.30(38.88,57.15)s,均P<0.001〕。结论在上述5项住院风险评分中,IC法与TC法的评分结果存在良好的一致性,而IC法计算速度更快,值得临床信任与推广。