简介:Datafittingisanextensivelyemployedmodelingtoolingeometricdesign.Withtheadventofthebigdataera,thedatasetstobefittedaremadelargerandlarger,leadingtomoreandmoreleast-squaresfittingsystemswithsingularcoefficientmatrices.LSPIA(least-squaresprogressiveiterativeapproximation)isanefficientiterativemethodfortheleast-squaresfitting.However,theconvergenceofLSPIAforthesingularleast-squaresfittingsystemsremainsasanopenproblem.Inthispaper,theauthorsshowedthatLSPIAforthesingularleast-squaresfittingsystemsisconvergent.Moreover,inaspecialcase,LSPIAconvergestotheMoore-Penrose(M-P)pseudo-inversesolutiontotheleast-squaresfittingresultofthedataset.ThispropertymakesLSPIA,aniterativemethodwithcleargeometricmeanings,robustingeometricmodelingapplications.Inaddition,theauthorsdiscussedsomeimplementationdetailofLSPIA,andpresentedanexampletovalidatetheconvergenceofLSPIAforthesingularleast-squaresfittingsystems.
简介:Theoptimallyweightedleastsquaresestimateandthelinearminimumvarianceestimatearetwoofthemostpopularestimationmethodsforalinearmodel.Inthispaper,theauthorsmakeacomprehensivediscussionabouttherelationshipbetweenthetwoestimates.Firstly,theauthorsconsidertheclassicallinearmodelinwhichthecoefficientmatrixofthelinearmodelisdeterministic,andthenecessaryandsufficientconditionforequivalenceofthetwoestimatesisderived.Moreover,undercertainconditionsonvariancematrixinvertibility,thetwoestimatescanbeidenticalprovidedthattheyusethesameaprioriinformationoftheparameterbeingestimated.Secondly,theauthorsconsiderthelinearmodelwithrandomcoefficientmatrixwhichiscalledtheextendedlinearmodel;undercertainconditionsonvariancematrixinvertibility,itisprovedthattheformeroutperformsthelatterwhenusingthesameaprioriinformationoftheparameter.
简介:LetGbeasimplegraphwithnverticesandλn(G)betheleasteigenvalueofG.Inthispaper,weshowthat,ifGisconnectedbutnotcomplete,thenλn(G)≤λn(Kn-11)andtheequalityholdsifandonlyifGKn-11,whereKn-11,isthegraphobtainedbythecoalescenceofacompletegraphKn-1ofn-1verticeswithapathP2oflengthoneofitsvertices.
简介:Thispaperdevelopsgoalprogrammingalgorithmtosolveatypeofleastabsolutevalue(LAV)problem.Firstly,wesimplifythesimplexalgorithmbyprovingtheexistenceofsolutionsoftheproblem.Then,wepresentagoalprogrammingalgorithmonthebasisoftheoriginaltechniques.TheoreticalanalysisandnumericalresultsindicatethatthenewmethodcontainsalowernumberofdeviationvariablesandconsumeslesscomputationaltimeascomparedtocurrentLAVmethods.
简介:EDGERECONSTRUCTIONOFPLANARGRAPHSWITHMINIMUMDEGREEATLEASTTHREE-(IV)¥FANHongbing(DepartmentofMathematics,ShandongUniversity,Ji'...