简介:给出三个非常容易让人误以为真的测度猜想,通过定理与λ-Cantor集及其余集的构造给出三个猜想的否定答案.
简介:在四阶微分方程非线性项f中含有未知函数“的二阶导数u”的情况下,运用Avery-Peterson不动点定理,研究了一类四阶微分方程三点边值问题三个正解的存在性,得到了该类边值问题存在三个正解的充分条件.
简介:证明了在正则空间中闭Lindelof映射保持且逆保持submeso紧性,这改进了林寿关于正则空间完备映射保持且逆保持submeso紧性这一结果;同时我们引用一个反例说明原象空间的正则性是必要的.
简介:许多常微分方程教材关于解的整体连续依赖性的讨论都用到了一个“紧性”事实:欧氏空间中的紧集上一个局部Lipschitz函数一定在该紧集上是全局Lipschitz的.然而这一事实在教学中并非显然,不少学生在试图给出证明时都走入了一个误区.本文对这一问题从正反两方面进行了讨论.
简介:设M为S^n+1中紧致极小超曲面,Mp,n-p为Sn+1的Clifford极小超曲面,若Spec(M)=Spec(Mp,n-p)在一定条件下,我们可以得出M与Mp,n-p等距同构。