简介:首先,研究了Erdos1合著网络的特征属性,一方面使用节点的度、介数、接近中心性来描述Erdos1合著网络节点重要性,另一方面使用特征向量中心性和本文提出的高阶度参数来描述Erdos1合著网络节点影响力;然后,分别用逼近理想解的排序(TOPSIS算法)算法和主成份分析(PCA)对节点重要性和影响力排序;最后,利用修改的网页排名(PageRank)算法讨论了网络科学原创性论文中最具影响力的论文。
简介:链路预测是网络信息挖掘的主要研究内容,通过对网络结构和其他信息的分析,挖掘缺失的链接或预测未来可能出现的链接。链路预测在推荐系统、社会网络和生物网络分析中有着十分广泛的应用。本文首先介绍了基于公共邻居、路径和随机游走的8种常用的链路预测指标.并在此基础上提出了一种基于这8种指标线性组合的度量指标,并经过实验找出了较好的优化参数。然后,提出了基于这8种指标的神经网络模型.并分别基于Weka平台和FANN库进行了实现。在社会网络的4个公开测试集上的实验结果表明.基于FANN库的神经网络模型的预测结果最好,在4个数据集上最高的AUC值分别达到了0。95l8、0.9289、0.7480和0.8677,与单一指标最好的AUC值相比分别提高了3.92%、1.45%、7.06%和24.35%。
简介:ANOTEONVECTORVALUEDANALYTICFUNCTIONS¥ZHANGHAITAO(DepartmentofMathematics,ZhejiangUniversity,Hangzhou310027)Abstract:Analyticf...
简介:在网络终端视频体验过程中,影响用户体验的两个关键指标为初始缓冲等待时间和卡顿缓冲时间,本文结合移动视频传输协议等相关知识,通过机理分析方法,对实验数据进行分析和挖掘,建立了初始缓冲时延映射模型与卡顿时长占比函数模型。并基于视频体验评分测试软件Speedvideo及其网络运营平台,对所在地多个区域进行了综合测试。