简介:用K—Carleson测度刻画了B^α(B0^α)到QK的复合算子的有界性,以及B^α到QK,0的复合算子的有界性和紧性.
简介:本文利用一种积分平均函数给出了加权Dirichlet空间Dα。(α>-1)上的复合算子Cψ为Schattenp-类算子的充要条件.此结果包含了过去已有的关于Hardy空间及加权Bergman空间Aα(α>-1)上的复合算子的已有结论.主要定理是:设p>0,α>一1,ψεDa,则Cψ为Dα上的Schatten p-类算子的充要条件是存在δ>0,使得积分平均函数Φδ(z)=λ(D(z,δ))=1 integral form n=D(z,δ)τψ,α(ω)d-λ(ω)属于L2p(dv),其中D(z,δ)为伪双曲圆盘,τψ,α为Cψ关于Dα的确定函数;dv(z)=(1-|z|2)-2dλ(z),dλ为D上的就范面积测度.
简介:讨论了复平面内单位圆盘上的加权Orlicz-Bergman空间以及这些空间上的复合算子,给出了复合算子的范数估计及可逆性条件.
简介:利用上极限,给出了单位球上加权Bergman空间的加权复合算子的本性模的表示.
简介:术文讨论了加权Bergman空间到Zygmund空间(小Zygmund空间)的广义复合算子Cφ^h的有界性和紧性特征,得到了以下约结果:(1)Cφ^h是加权Rergman空间到Zygmund空间的有界算子和紧算子的充要条件;(2)Cφ^h是加权Bergman空间到小Zygmund空间的有界算子和紧算子的充要条件.
简介:本文在经典风险模型基础上,把索赔到达过程Nt加以推广为更新过程。且在保单到达非均匀的前提下,把保单到送过程推广为更新过程Mt,得到有限时间t孕余的瞬时分布ψ(u,θ0,t,α),然后求得时刻t的生存概率ψ(t,u,θ0)。
简介:设函数φ和Ф是复平面单位圆盘D上的解析函数且φ(D)■D,则将加权复合算子定义为Wφ,Ф:f→Фf°φ.当1
简介:本文研究一类带有扰动且舍相依索赔的复合二项风险模型,考虑两种类型的索赔:主索赔和副索赔,主索赔以一定的概率引起副索赔且副索赔可能以一定的概率延迟到下一个时间段发生.通过引入辅助模型,利用递归等方法,得到了该模型下的Gerber--Shiu折现罚金函数和破产概率的明确表达式.最后给出了索赔额服从几何分布的数值模拟.