简介:利用随机不动点指数理论及Banach常微分方程理论的随机结果,证明了关于随机弱内向映射一个随机三解定理.
简介:最后S.Liu[2]和笔者[4]得到了两个Hermite矩阵的Khatri-Rao乘积的一些不等式。我们以两种方式来推广这些结果。首先,将结论推广到任意有限个Hermite矩阵的Khatri-Rao乘积;其次,给出了相应不等式的等式成立的充分必要条件。
简介:主要讨论奇异边值问题{Фp(x′))′+a(t)f(x(t))=0,t∈(0,1)ax(0-βx′(0)=0,γx(1)+δx′(1)=0在奇性条件下无穷多个解的存在性问题,其中:Фp(s)=|s|p-2s,p〉1;a(t)在[0,1/2]上有可数个奇性点.
简介:通过构造一个特殊的锥,利用锥上的不动点指数,研究了Banach空间中二阶三点奇异边值问题多个正解的存在性.
简介:研究的是二阶非线性微分方程组的边值问题,在适合的条件下,应用抽象不动点理论以及线性算子的第一特征值的条件,得出了方程组的多个正解的存在性.
简介:研究含多个Volterra型积分算子的积分微分方程组Robin边值问题的奇摄动.在适当的条件下,利用微分不等式理论.证明了解的存在及解的按分量一致有效的估计。
简介:研究具多个滞量(t≥3)的一阶中立型微分方程d/dt[x(t)+px(t-r)]+^n∑(i=1)qix(t-si)=0(1)其中p,r,sn>s(n-1)>…>s1,qi(i-1,1…,n)都是正常数,得到方程(1)振动的一个充要条件和一个充分条件,这些条件带有若干个可调参数,当参数取定不同的值时,可得出不同的充要条件和充分条件,我们的结果包含或改进了文献[2,3,8,10]等的一些相应结果。
简介:利用锥拉伸及锥压缩不动点定理,讨论了Banach空间中一类带奇异性的脉冲积-微分混合方程边值问题多个正解的存在性.
简介:通过建立一个新的比较引理,应用上下解方法和单调迭代技术,研究了Banach空间中含有无穷多个跳跃点的一阶脉冲积分-微分方程无穷边值问题在任意闭区间上最小解和最大解的存在性.
随机弱内向映射的多个随机不动点定理
任意多个Hermitian矩阵的Khatri—Rao乘积的一些不等式
具有无限多个奇性点的一维p-Laplacian方程的正解
Banach空间中二阶三点奇异边值问题的多个正解
二阶非线性微分方程组三点边值问题的多个正解
含多个Volterra型积分算子的积分微分方程组边值问题的奇摄动
带有多个滞量的一阶中立型微分方程振动的充要条件
Banach空间中一类奇异脉冲积-微分混合方程边值问题多个正解的存在性
Banach空间中含有无穷多个跳跃点的一阶脉冲积分-微分方程的无穷边值问题