简介:本文通过构造Lyapunov函数和利用不等式分析技巧,研究了具有时滞的细胞神经网络的稳定性,给出了与时滞无关的网络渐近稳定的充分判据,该判据可用于时滞细胞神经网络的设计与检验,有重要的理论意义与应用价值。
简介:考虑非自治具有阶段结构种群扩散和收获的时滞生态模型.运用泛函微分方程的单调流理论和凹算子理论,得到唯一正周期解的存在性和全局渐进稳定性.并得到收获阈值.该结论说明只要收获量不超过其阈值,通过扩散则种群可以保持持续生存,而且稳定在一个周期震荡水平.对合理利用生物资源和保持生物多样性具有理论指导意义.
简介:利用Mawhin的重合度理论,研究了一类具时滞的Liénard型方程的周期解的存在性,并举例说明了其应用.
简介:本文采用Lyapunov-Krasovskii泛函方法对一类变时滞细胞神经网络的全局指数稳定性进行了研究,得出了一些关于DCNN全局指数稳定性的充分条件。
简介:讨论了具有时滞和反馈控制的离散Leslie概周期捕食与被捕食系统.利用差分不等式和通过构造适当的Lyapunov函数,得到了系统持久性和全局吸引的充分条件.利用泛函概周期的壳理论,得到了系统存在唯一全局吸引概周期解的充分条件.