简介:亲爱的同学,通过本章的学习,你将:1.经历从具体实例中认识图形的相似,探索相似图形的性质;了解线段的比、成比例线段;两个三角形相似的概念,探索两个三角形相似的条件,知道相似多边形的特征与性质;了解图形的位似,能利用位似将一个图形放大或缩小;通过典型实例去观察和认识现实生活中物体的相似,会利用图形的相似解决一些实际问题;认识并能在方格纸上建立适当的直角坐标系,在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标,能灵活运用不同的方式确定物体位置;学习用坐标的方法研究图形的运动变换,从中体会数与形间的关系。
简介:给出了n阶带形状参数的三角多项式T-Bézier基函数.由带形状参数的三角多项式T-Bézier基组成的带形状参数的T-Bézier曲线,可通过改变形状参数的取值而调整曲线形状,随着形状参数的增加,带形状参数的T-Bézier曲线将接近于控制多边形,并且可以精确表示圆、螺旋线等曲线.阶数的升高,形状参数的取值范围将扩大.
简介:单个不可分的操作员g_(Ω,α),和Marcinkiewicz不可分的操作员μ_(Ω,α)被学习。操作符的内核象|y一样表现|~(-n-α)(α>0)接近起源,并且包含震荡的因素e~((i|y|)~(-β))(β>0)并且联合起来的范围S~(n-1)上的分发Ω。如果Ω与0