简介:在分析证券市场中证券组合投资不确定性质的基础上,通过对Markowitz模型中证券期望收益与方差引入容差项来度量证券市场的不确定性,建立了不确定条件下具有容差项的Markowitz证券组合投资模型;分类讨论了容差的上界与下界所对应的两类有效组合前沿,得到了不确定条件下的证券组合投资模型的最优化解法及相关定理;最后给出了一个具体的数值实例.
简介:用变分方法得到一类非线性差分方程多重周期解的存在性.我们的结果推广了Cai,Yu和Guo[Comput.Math.Appl.,52(2006),1630-1647]的结果,并且这里给出的证明显著地简化了.
简介:在连续Gompertz模型基础上,导出了差分形式的Gompertz模型。通过对肿瘤生长数据的模拟,验证了差分形式的Gompertz模型对连续Gompertz模型具有良好的逼近效果;进一步,对其稳定性进行了研究,讨论了模型参数对平衡点稳定性的影响;最后,研究了一类基于差分形式的Gompertz模型的非线性动力系统的长期行为,数值模拟表明差分形式的Gompertz模型的长期行为对模型参数较为敏感。