学科分类
/ 9
169 个结果
  • 简介:借助于超几何函数,在广义中心X2分布级数形式密度函数表达式的基础上列出了两类具体椭球等高分布下的广义中心X2分布密度函数的精确表达,并给出了详细的证明过程;同时计算了这两类具体椭球等高分布下的广义中心X2分布对应高阶矩的形式,作为推论验证了中心X2分布相关的结论.

  • 标签: 超几何函数 椭球等高分布 广义非中心x2分布 密度函数 高阶矩
  • 简介:一、启发提问在统计初步中,如果要研究一组数据平均水平或集中趋势,则只需研究这组数据的.如果要研究一组数据的波动大小,则要研究这组数据的或;如果还要研究在哪一个范围内的数据较多,在哪一个范围内的数据较少,这就需要研究这组数据的.二、读书自学 教材P185-P189三、启读指导1.获得一组数据的频率分布的一般步骤是:(1),(2),(3),(4),(5),(6).2.在P185例中,这组数据的最大值是,最小值是,它们的差是cm.3.当数据在100个以内时.按照数据的多少,常分成组.这是分组的经验法则.4.组距是指每个小组的两个端点的.5.实际决定组数时,常有一个尝试的过程;先定,再算出相应的,再看

  • 标签: 频率分布直方图 经验法则 长方形 组数据 组距与组数 最大值与最小值
  • 简介:分析了Г分布密度函数的性质,指出了该密度函数与相应参数之间的关系.主要研究第二个参数对密度的影响,证明了β增大时Г(α,β)分布密度极大值也增大,还指出了β变化时Г(α,β)分布密度与另一特定密度曲线交点的变化规律.

  • 标签: Г分布 密度函数 Г函数
  • 简介:利用集合序列P—K收敛的概念,讨论了离散扰动下的向量均衡问题弱有效解的稳定性.提出了一个新的向量均衡问题的极小化序列的概念.给出了各种充分条件以确保集合的包含关系,并举例阐述相应的结论.

  • 标签: 向量均衡 弱有效解 P—K收敛 稳定性
  • 简介:学者往往用单一的分布模拟和拟合杂波,如正态分布、瑞利分布和威布尔分布等。然而在实际中,雷达杂波由多种类型的杂波组成,单一分布通常不能精确刻画雷达杂波规律,因此,应用混合分布模型对雷达杂波数据建模更准确。本文考虑用正态分布和瑞利分布的混合分布拟合杂波,并应用矩估计方法和基于EM算法的极大似然估计方法估计模型参数,最后,应用最大后验概率分类准则验证2种估计方法的分类准确率。通过数据模拟,得出极大似然估计的效果和分类准确率都要优于矩估计的估计效果和分类准确率。

  • 标签: 混合分布 正态分布 瑞利分布 EM算法
  • 简介:提出一种具有控制结构的向量均衡问题与向量映射的新的伪单调性概念,得到具有控制结构的向量均衡问题解的存在性及其解集的紧凸性.作为应用,得到具有控制结构的向量变分不等式与互补问题的解.

  • 标签: 向量均衡问题 控制结构 伪单调 解集
  • 简介:本文用较为简便的方法推导出一元及n元p─范分布的密度函数,研究了n元,p—范分布的几个性质.

  • 标签: p─范数 p─范分布
  • 简介:分布参数系统控制主要研究状态空间维数为无穷的系统的控制,本文讨论了分布参数系统控制的一些理论,介绍了作者的著作《无穷维线性系统控制理论》的基本内容。

  • 标签: 分布参数系统 系统控制 无穷维系统 适定正则性
  • 简介:运用Banach极限的技巧将收敛控制条件进一步放宽,去掉了∑x=1^∞|αn+1-an|〈∞条件,在相对山弱的条件Txn+1-Txn→0,n→∞下证明了一个强收敛定理,改进了Wittmann的结果.

  • 标签: 非扩展非自映像 BANACH极限 不动点
  • 简介:提出一种具有控制结构的向量均衡问题与向量映射的新的伪单调性概念,得到具有控制结构的向量均衡问题解的存在性及其解集的紧凸性.作为应用,得到具有控制结构的向量变分不等式与互补问题的解.更多还原

  • 标签: 向量均衡问题 控制结构 伪单调 解集
  • 简介:对于X(n)=max1≤i≤n(Xi),其中Xi(1≤i≤n)独立同分布,均服从指数分布,求X(n)的数学期望和方差,本文给出了两种不同的解法,并且导出了两个恒等式.最后本文还从数学分析的角度证明了这两个恒等式.

  • 标签: 指数分布 数学期望 方差
  • 简介:THENBELCANDNWELCCLASSESOFLIFEDISTRIBUTIONS¥CAOJINHUA;WANGYUEDONG(InstituteofAppliedMathematics,ChineseAcademyofScience,Beijin...

  • 标签: LIFE DISTRIBUTION CLASS NBELC NWELC CONVEX