简介:让x:Mn是有非零主管弯曲的脐的免费hypersurface。然后,x与Laguerre公制的g被联系,Laguerre张肌\mathbbL\mathbb{L},Laguerre形式C,和一个Laguerre秒基础形成\mathbbB\mathbb{B}它是在Laguerre下面的x的invariants转变组。如果它的Laguerre形式消失,hypersurfacex被称为Laguerreisoparametric并且\mathbbB\mathbb的特征值{B}是不变的。在这份报纸,我们在4分类所有Laguerreisoparametrichypersurfaces。
简介:LetMbeapositivequaternionicKhlermanifoldofdimension4m.Wealreadyshowedthatifthesymmetryrankisgreaterthanorequalto[m/2]+2andthefourthBettinumberb_4isequaltoone,thenMisisometrictoHP~(m).Thegoalofthispaperistoreportthatwecanimprovethelowerboundofthesymmetryrankbyoneforhighereven-dimensionalpositivequaternionicKahlermanifolds.Namely,itisshowninthispaperthatifthesymmetryrankofMwithb_4(M)=1isgreaterthanorequaltom/2+1form≥10,thenMisisometrictoHP~m.OneofthemainstrategiesofthispaperistoapplyamoredelicateargumentofFrankeltypetopositivequaternionicKhlermanifoldswithcertainsymmetryrank.
简介:Assumethatm≥2,pisaprimenumber,(m,p(p-1))=1,-1(Z/mZ)~*and[(Z/mZ)~*:]=4.Inthispaper,wecalculatethevalueofGausssumG(X)=Σ_(x∈F_q~*)x(x)ζ_p~(T(x))overF_q,whereq=p~f,f=((m))/4xisamultiplicativecharacterofF_qandTisthetracemapfromF_qtoF_p.Underourassumptions,G(x)belongstothedecompositionfieldKofpinQ(ζm)andKisanimaginaryquarticabeliannumberfield.WhentheGaloisgroupGal(K/Q)iscyclic,wehavestudiedthiscycliceaseinanotherpaper:'Gausssumsofindexfour:(1)cycliccase'(acceptedbyActaMathematicaSinica,2003).Inthispaperwedealwiththenon-cycliccase.
简介:At-hyperwheel(t≥3)oflengthl(orW(t)lforbrevity)isat-uniformhypergraph(V,E),whereE={e1,e2,...,el}andv1,v2,...,vlaredistinctverticesofV=∪eii=1lsuchthatfori=1,...,l,vi,vi+1∈eiandei∩ej=P,j∈/{i1,i,i+1},wheretheoperationonthesubscriptsismodulolandPisavertexofVwhichisdifferentfromvi,1≤i≤l.Inthispaper,theminimumcoveringproblemofMCλ(3,W(3)4,v)isinvestigated.DirectandrecursiveconstructionsonMCλ(3,W(3)4,v)arepresented.Thecoveringnumbercλ(3,W(3)4,v)isfinallydeterminedforanypositiveintegersv≥5andλ.