学科分类
/ 1
2 个结果
  • 简介:针对股票时间序列的特点,从离群点对股票时序数据有序性的影响角度出发,在界定形离群点含义的基础上,利用形理论将离群模式挖掘理解为一个优化分割问题。采用推广G—P(Grassberger-Procaccia)算法计算股票时间序列数据集的多重形广义维数,并利用贪婪算法的思想设计了FT-Greedy算法来求解基于形理论的时间序列离群模式挖掘优化问题的解集。实验证明,该方法能有效地解决股票时间序列离群模式挖掘问题。

  • 标签: 数据挖掘 离群模式挖掘 分型理论 股票时序数据
  • 简介:针对频率统计方法存在不连续的置信区间以及在小样本情况下检验势比较低的问题。把非对称Laplace分布表示成正态分布和指数分布的线性组合,推导了不同先验分布情况下参数的最大后验密度置信区间,并构造了位回归单位根检验的贝叶斯因子,实现了对非平稳时间序列的局部单位根检验。仿真分析表明贝叶斯位回归方法是一种稳健全面的单位根检验方法。对我国居民消费价格指数的实证研究发现,我国居民消费价格指数表现出局部的持续性,在分布的下尾部不受普通冲击的影响,但在分布的上尾部受普通冲击的影响。

  • 标签: 分位数 AR模型 单位根 贝叶斯因子