简介:在[3]中,给出了一类奇异性方程组Ax=b的唯一解x=Adb的Cramer法则,本文将其推广到带W-权Drazin逆Ad,w,得到如下结果:奇异线性方程组Ax=b的唯一解x=WAd,wWb的分量xj可表示成xj=det[(WA)(j→Wb)UV(j→0)0]/det[WAUV0]j=1,2,…,n,其中A∈Cm×n,W∈C^n×m,Ind(WA)=k1,Ind(AW)=k2,rank(WA)^k1=r
简介:面向建筑集群的冷热电联供系统的设计和优化是实现建筑楼宇能源成本节约的重要途径。随机因素对该联供系统的优化决策,具有显著的影响。考虑建筑楼宇的能源需求为随机变量,构建随机混合整数规划模型,解决以最小化建筑楼宇总费用为目标时建筑集群冷热电联供系统的优化问题;其次,提出采用Benders多割平面方法求解多目标规划问题,从而寻找冷热电联供系统的设备配置和系统运行的Pareto最优决策;最后,通过实验验证了模型和算法的有效性。实验结果表明建筑集群在协作模式下,相比于非协作模式,具有更低的总费用。
一类奇异线方程组的Cramer法则
基于随机规划的建筑集群冷热电联供系统优化研究