简介:针对亚轨道可重复使用运载器(SRLV)的应用需求,在将卫星投送到预定轨道同时确保SRLV安全返回的前提下,对基于记忆原理的轨迹/总体参数一体化优化方法进行了研究。记忆优化算法是一种具有全局收敛性的随机搜索方法,每次搜索的试探解优劣状态由记忆元来存储。利用记忆原理的记忆增强和遗忘规律来衡量优化搜索过程中试探解的状态,并以燃料最省作为优化指标。同时采用三种不同的搜索策略,实现对试探解的随机搜索,避免陷入局部极小问题,并以此来提高搜索速度。仿真表明:卫星入轨速度偏差小于2m/s,高度偏差小于10m,轨道倾角偏差小于0.0001°。SRLV最终与着陆场的位置偏差小于100m,速度偏差小于5m/s。相较于传统的轨迹优化方法,新方法适用于复杂的轨迹/参数一体化优化问题,搜索速度快,求解精度高,有利于算法在工程实际中的应用与推广。
简介:Unscented卡尔曼滤波(UKF)是一种新的非线性滤波算法,将其引入到GPS/DR系统的滤波中,并针对系统模型的特点对原UKF算法进行了简化,建立了新的滤波方法.仿真结果表明,同EKF相比,UKF的滤波精度和稳定性都显著提高了,还可避免计算烦琐的Jacobi矩阵,真正实现了低成本、高精度的导航定位要求.
简介:本文论述了重力梯度仪在惯性导航、地球科学、地质科学中的重要作用以及重力梯度仪的现状和前景,着重评述了旋转加速度计重力梯度仪、静电加速度计重力梯度仪和超导重力梯度仪的现状和发展,最后指出了对重力梯度仪的应用和发展需要进一步研究的问题
简介:基于Krein空间的鲁棒Kalman滤波器与通过其它方法建立的鲁棒Kalman滤波器相比有较高稳态精度。文中将基于Krein空间的鲁棒Kalman滤波方法用于导弹捷联惯导系统动基座传递对准,并与标准Kalman滤波进行了比较。仿真结果表明,在垂直比力参数存在摄动的情况下,如果基于Krein空间的鲁棒Kalman滤波器的参数选取适当,它的精度鲁棒性优于标准Kalman滤波。