简介:冲击载荷强迫微加速度计的敏感质量大大偏离平衡位置,使差动静电力发生器的非线性效应体现出来,其结果是使正常工作时敏感质量仅在平衡位置附近有微小位移的状况下成立的负反馈闭环系统模型不再适用,敏感质量的受控特性可能变为正反馈,从而使微加速度计失效。为提高微加速度计受外界大载荷冲击后的可靠性,分析了加速度计的敏感质量在不同限制的静电反馈力下的受控特性及对应的闭环系统特性,推导了在已知止挡机械参数下确定微加速度计相应电气参数从而避免此类失效的防吸合准则。多次的验证实验表明,按防吸合准则设计了系统参数的静电力反馈加速度计,在受到远超过其本身量程的载荷冲击后,可以100%地防止吸合现象的出现。
简介:对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔曼滤波(CKF)相结合的强跟踪-容积卡尔曼滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。
简介:在广义系统故障诊断过程中,若系统动态模型中存在不确定性,传统的无迹卡尔曼滤波算法将失去其传感器故障估计精度。为解决该问题,提出一种改进的强跟踪卡尔曼滤波算法以实现广义连续-离散系统的传感器故障诊断及隔离。首先,提出基于多重渐消因子的强跟踪滤波算法以实现动态模型存在不确定性广义连续-离散系统的故障诊断;然后提出一种结合多模型自适应估计的强跟踪卡尔曼滤波(STUKFMMAE)算法以实现传感器故障的有效隔离。最后,针对基于广义连续-离散系统的惯性传感器故障模型提出仿真算例。仿真数据表明,传统无迹卡尔曼滤波对于传感器故障估计误差为0.002左右,而提出的基于多重渐消因子的强跟踪滤波算法对于传感器故障估计误差最大值为未超过4×10~(-4),且STUKFMMAE相较于UKFMMAE算法具有更好的隔离效果。仿真结果验证了设计方案的有效性。
简介:捷联惯性导航系统静基座初始对准时一般先进行粗对准,使失准角缩小到一定范围内从而满足小失准角假设下的线性误差模型,然后再进行精对准。在不进行粗对准时失准角一般为大角度,需要采用复杂的非线性误差模型和非线性滤波方法。研究发现通过设置合理的误差协方差矩阵初值,采用反馈校正滤波结构,并引入强跟踪滤波算法可以在大失准角情况下既无需粗对准,又无需采用非线性模型来实现精对准。仿真结果表明,该方法可以实现大失准角初始对准,鲁棒性好,在任意姿态初值下都可以使航向角在300s内收敛到0.05°的理论极限精度,与小失准角精对准方法的速度和精度相当但省去了粗对准因而耗时更短,与无迹卡尔曼滤波在600s时才收敛到0.5°的速度相比大为改善。