简介:文章从静力和动力学的角度简要回顾了关于沿内角的自发毛细流动研究的最近进展.作为一个通用几何形状,内角在地面微观尺度下或处于失重状态的航天飞行器系统内大尺度下为液体提供有效的输运通道.当一定的几何条件得到满足并且当毛细力远远大于体力比如重力的时候,沿着内角会发生自发毛细力驱动流动现象.从静力学的角度来说,本文讨论的自发毛细驱动流动和当特定的边界条件发生突然变化,比如重力作用突然消失时带有内角的容器内部单值有限高度的平衡自由面的非存在性有关系.Concus-Finn方法可以用来确定这样的平衡自由面在一个横截面处处一致的柱形容器内的非存在性.用这个方法可以推导出在失重状态下一个内角为2α的通常柱形容器里,当接触角小于π/2-α时,平衡曲面不存在.通常来说,沿内角的自发毛细驱动流动属于层流.利用尺度分析和摄动法,成功分析了该流动的动力学特性,并且推导出对设计有用的封闭形式的解析解.一个典型的结果是在黏性流的范畴里毛细面端点的移动和t~(1/2)成正比.
简介:圆锥误差和量化误差是激光捷联惯性导航系统姿态解算误差的两个最主要的误差源.从分析圆锥误差产生的机理出发,分别分析了以角度和角速度为计算参数的圆锥误差补偿算法,并对量化误差对圆锥误差补偿算法的影响进行了研究.通过理论分析和数字仿真,得出在实际工程应用中,采用角速度为输入信息的激光捷联惯性导航系统姿态算法应该在考虑量化误差的情况下,采用以角速度为计算参数的圆锥误差补偿算法.
简介:采用放电测量和光学诊断技术对三电极等离子体合成射流激励器电特性及流场特性进行了实验研究,分析了放电电容、激励器腔体体积和射流出口直径对三电极等离子体合成射流流场分布及速度特性的影响.实验结果表明:三电极等离子体合成射流激励器放电过程包含触发、放电增强、放电衰减和电弧熄灭四个阶段,表现出典型的欠阻尼放电特征;等离子体合成射流流场包含射流主流、前驱激波和复杂的反射波系.放电电容、腔体体积和射流出口直径均存在一阈值,当电容和出口直径小于阈值、腔体体积大于阈值时,前驱激波以当地声速(约345m/s)恒速传播,否则前驱激波则以大于345m/s的速度传播,且与射流速度呈现相同的变化趋势,即随着放电电容和出口直径的增加而增大,随着腔体体积的增加而减小.
简介:等离子体合成射流控制技术因其具有不需要外部气源,工作频带宽,射流速度高,射流净质量通量为零,低功耗,激励器形式多样,环境适应性强等特点,成为了目前针对高速流场主动流动控制技术中应用潜能大、有望实现实际工程应用突破的流动控制装置.传统的等离子体激励器的出口多为垂直于流向或与流向成一定夹角,故垂直于流向的动量分量会对激励器的流动控制能力产生影响.为增强流向动量注入能力,拟设计一种新型的水平动量注入型等离子体合成射流激励器.本文主要内容有:采用外部电路电参数测量与高速纹影技术,对激励器常压下单周期工作特性与重频工作特性进行了初步研究.对水平动量注入型等离子体合成射流激励器的射流结构进行分析,探究该激励器工作频率对射流流场的流场特性与控制能力的影响.最后在高速纹影测量的基础上,开展了激励器高频工作时均出口动压的研究.实验表明:水平动量注入型激励器单周期射流初始速度达到220m/s单周期激波初始速度达到477m/s.此外,工作频率对于激励器的影响主要体现在对激励器控制范围的影响,当激励器工作频率增高时,在相同位置时激励器的动压输入能力下降.
简介:基于Krein空间的鲁棒Kalman滤波器与通过其它方法建立的鲁棒Kalman滤波器相比有较高稳态精度。文中将基于Krein空间的鲁棒Kalman滤波方法用于导弹捷联惯导系统动基座传递对准,并与标准Kalman滤波进行了比较。仿真结果表明,在垂直比力参数存在摄动的情况下,如果基于Krein空间的鲁棒Kalman滤波器的参数选取适当,它的精度鲁棒性优于标准Kalman滤波。
简介:针对SAR图像匹配及定位需要耗用不等的计算时间而造成的量测不等间隔输出和量测信息滞后问题,提出一种新的SAR时延补偿算法。该算法在标准卡尔曼滤波(KF)基础上,当SAR有量测信息生成时,根据多模型方法进行量测预测,利用预测值修正SINS状态;而SAR无量测信息输出时,通过插值方法生成量测信息来改善系统滤波精度。仿真结果表明,采用基于多模型量测预测的KF算法可以将位置误差由45m减小到10m以内,航向角稳态误差值小于5.8";而在此基础上叠加插值预测算法可以将位置误差进一步控制在6m以内,航向角稳态误差小于4.7",证明了本文提出的算法能够有效补偿SAR的随机时延并提高组合导航系统的解算精度。