简介:致密砂岩气藏是一种重要的非常规油气资源。致密砂岩储层非均质性很强,渗透率极低,而且使用水平井开发时井眼轨迹复杂同时还需进行水力压裂,因而用传统模拟方法进行生产动态预测和开发优化时面临诸多挑战。本文的目的是建立一个适用于致密砂岩气藏的数据驱动的预测工具.该预测工具以人工神经网络为基础,这种神经网络可以作为物理驱动的模拟方法(即数值模拟模型)的有力补充.本文所设计的工具用于在已知初始条件、作业参数、油藏/水力压裂特征等参数的情况下代替数值模型预测水平井动态本文的预测工具以数据驱动的模型为基础,用10年累计天然气产量数据对其进行了盲测,结果表明误差只有3.2%。另外,本研究还建立了一个图形用户界面,以便于工程师在实际生产中使用该工具,用户可以通过该界面在极短时间内得到某个油藏的可视化动态评价结果。以WillianlsFork组为例,通过评价不同井设计方案下的生产动态,并结合由蒙特卡洛模拟给出的不确定性,对该工具的适用性进行了验证。结果表明,利用该工具可以在合理的准确度范围内快速地获得水平井生产动态的P10、P50和P90估算值.
简介:北达科他州巴肯组页岩的完井技术复杂而多样。为了达到最佳采油效果,巴肯组地层需要用水平钻井方式,并且需要水力压裂进行增产处理。如果钻井方向适合纵向压裂处理,那么只需要一次压裂处理,多期压裂的分隔的问题就不会存在。如果应力方向不确定,或者钻井方向为横向的,那么多期压裂的隔离是一个非常重要的问题。过去几年里,为了达到巴肯组分级压裂隔离的最佳效果,工程师们试验了多种方法。我们对巴肯组成功的完井方式做了一次简要的回顾,确定了横向水力压裂完井成功程度最高的一种方法。这种分段方法可以根据井眼实际情况加以调整,以便压裂作业在油气显示最好的地方进行。使用可膨胀的套管外封隔器和砂球驱动的压裂套管可以产生隔离开的压裂段。在一次泵送中,进行了多次压裂作业,而这些作业是通过有选择地打开套筒从井口至井底的某一段来完成的。本文中,我们讨论了两口井的完井作业,希望从完井和开发的角度对这种概念提供正面的证据。
简介:我国页岩气资源量丰富,与美国页岩气资源量相当。压裂改造形成复杂裂缝是页岩储层获得工业油气流的关键。针对页岩的非均质性特征,页岩水平井均匀改造技术主要通过封堵已改造区域,进一步改造未压裂区域,实现改造段全覆盖,增加裂缝接触面积,提高裂缝复杂程度与作业时效的改造技术。结合组合粒径暂堵球、暂堵球+暂堵剂、暂堵颗粒+暂堵粉末等多种技术手段,优化相关关键参数,形成了3种不同的页岩储层均匀改造工艺模式:段内均匀改造工艺模式、多段均匀改造工艺模式、加密射孔均匀改造工艺模式。暂堵剂较暂堵球到位响应弱,封堵效果显著,泵送排量与封堵效果无直接关系。暂堵压力响应值最高达9MPa。压裂施工曲线与微地震监测显示,井段均匀改造效果明显,高/低应力区域得到有效改造,监测事件响应点覆盖率100%,单段SRV体积提高40.2%~44.8%,微地震事件数量增长30.4%~53.6%。
简介:实践证明,水平井结合多段横向水力压裂增产处理是开发页岩气藏的一种有效策略。一些石油公司把这种方法成功地运用到了页岩油藏的开发。但由于油的粘度高而且在油藏压力低于原油的泡点压力时最终会出现两相流,页岩油的采收率低于页岩气。但是,近期发现的伊格尔福特(EagleFord)页岩油藏明显超压,初始油藏压力远高于泡点压力。这一有利条件再配合水力压裂技术就可实现页岩油的商业开采。本研究的目的就是评估在油藏压力低于和高于泡点压力时超低渗非常规油藏的开采动态。水力裂缝的相对渗透率(包括临界含气饱和度等)与页岩基质的相差很大,而对页岩这种绝对渗透率很低的储层,也没有现成的实验室多相流测量技术可供使用。此外,水力裂缝中支撑剂嵌入和可能出现的多相流会导致真实的裂缝导流能力比实验室得出的结果低几个量级。与页岩气一样,要获得较高的页岩油采收率,生成的裂缝间距应足够密,以便在开采期间能够出现裂缝干扰现象。本文将就低于和高于泡点压力这两种情景,运用现有页岩油藏的成功经验,研究裂缝间距、裂缝导流能力、裂缝半长、临界含气饱和度、并底流动压力和基质渗透率等参数对油井的经济开采和最终采收率的影响。模拟表明结果严重依赖所假设的相对渗透率特性,而且通过敏感性研究获取了有关这些油井可能存在的长期开采动态的详细信息。
简介:通常利用各种流体对致密地层进行压裂以改善油井的渗透性,从而提高采收率。本文推荐一种处理致密地层的先进方法,尤其:逢合大型稠油油藏。该方法包括使井筒受到氩气等离子流的作用,确保及时有效地把热量传递到:近井苘地带。等离子流产生的高温改变了地层岩石的基本性质,使孔隙度和渗透率大幅增加。本丈研究了高温对碳酸盐岩的孔隙度和渗透率的影响。石灰岩在800℃-1200℃的高温下加热,在600℃以上,碳酸盐分解生成氧化钙和二氧化碳。碳酸盐试样的TGA分析表明:常压下分解速率主要取决于反应温度。低温下反应速率很慢,l小时只有5%碳酸盐转化成氧化钙,而在1000℃时,5分钟就转化完全。还利用扫描电镜(SEM)研究了不同温度下孔隙结构的变化。加热碳酸盐试样分析孔隙度和渗透率结果表明:1000℃时,孔隙度和渗透率分别增加100%和4500%。