简介:在为特定的油藏管理问题寻求最佳解决方法的过程中,正规的优化策略一般都要评价数百种乃至数千种方案。如果用地下的数值模拟模型来预测这些方案的效果,那么这一过程就会耗费大量时间。为了在某些优化技术[例如遗传算法(GA)或模拟退火(SA)]所主导的搜寻求解的过程中取代此类模拟模型,可以采用训练人工神经网络(ANN)的做法。可以从一个有代表性的模拟样本出发来训练神经网络,而这一样本则构成了解决许多不同管理问题所需的可反复使用的知识库。这些概念已被应用于BP公司彭帕那(Pompano)油田的一个注水项目。这里的管理问题是确定1—4口注水井的组合位置,它将使彭帕那油田今后七年的简单纯利获得最大化。利用石油行业的一个标准油藏模型,为取样于25个潜在注水井井位不同组合的550次模拟创建了一个知识库。首先要查询这个知识库,以回答三年和七年内使简单纯利最大化的最优方案问题。有关的答案表明,如能将仅依靠改变现有生产井的注水扩大为新钻三至四口注水井,就可能实现利润的可观增加,但资本费用也会增加。当这一知识库用作人工神经网络训练和测试的样本来源时,可以获得更好的答案。训练人工神经网络是为了预测最高注水量以及开始注水后三年和七年的油、气产量。人工神经网络对这些数量的快速估算可以用于纯利润计算中,而遗传算法又可以利用这一计算来评估不同注水井组合方案的效果。遗传算法的探索扩展了求解的空间,它含有的新方案在纯利润上超过了仅查询上述知识库所找到的最佳方案。为了评估预测误差对求解质量的影响,可以将人工神经网络预测油、气产量时所得出的最佳方案,与油藏模拟模型本身预测油、气产量时找到的最佳方案加以对比。虽然完成基于模拟模型的方案�
简介:准确地预测凝析气井的产能一般需使用密网格数值模拟法以模拟凝析油带的形成,并考虑诸如非达西流动和高毛细管数条件下相对渗透率变化等高速度现象。本文提供了一种能预测凝析气井动态的新技术,该技术使用了能用于电子表格软件的较为简单的技术。所提出的计算法采用油气藏枯竭物质平衡模型和向井流动动态的两向拟压力积分法。拟压力积分法已被推广到涵盖高速效应并顾及凝析油带形成所引起的产出流体组分的变化。该新技术已经通过与密网格组分模拟结果相对照而得到验证,且在垂直井、水平井和水力压裂井的各种情况范围内其结果的一致性相当好。电子表格软件模型法成为一种快速预测凝析气井动态、鉴测各种不同类型井中凝析油堵塞效应或研究敏感性的有力工具。同时它在涉及诸如地表设施、钻井计划和天然气销售合同等综合研究中需要使用简单凝析气储层动态模型的时候也是很有用的。
简介:新的地震采集方式可每天产生30TB的巨大数据,迫切需要并行计算技术支撑资料处理,而并行模式的复杂化(如MPI、OpenMP和CUDA等)导致程序设计的复杂化,尤其当系统软硬件资源变化时,必须反复修改源程序。为简化复杂的地震并行软件开发,提升地震处理并行效率,本文在分析各种并行模式的基础上,建立了一整套地震处理多核异构并行计算通用框架,将各种并行模式相结合,充分发挥各自的优势,实现地震处理软件的多核异构并行模式自动匹配,提高了地震处理软件在多核异构环境下开发的可行性和并行效率。基于该框架研发的GPU炮域波动方程叠前深度偏移软件,与CPU串行算法相比,计算精度等同,但并行效率提高20倍以上,且随GPU节点增多呈线性增长趋势。
简介:由于油气勘探开发问题已变得十分复杂,已无法只依靠一个学科来解决,同时我们又处在信息爆炸的时代,所以油气行业的多学科分析方法和数据发掘工作也就显得越来越必要,已远远超出了职业好奇心。为了解决我们所面临的困难问题,需要为传统学科(例如石油工程学、地质学、地球物理学和地球化学)拆除我们所构建的隔墙,同时寻找真正的多学科解决办法。因此,我们今天基于结果的“综合”将不得不让位于一种新的综合形式,这就是学科综合。此外,为了解决复杂问题,还需要超越标准的数学技术。为此,需要用一些新兴的成套方法和软计算技术(例如专家系统、人工智能、神经网络、模糊逻辑、遗传算法、概率推理和并行处理技术)来补充常规的分析方法。软计算与常规(硬)计算的区别,表现在软计算可以接受模糊性、不确定性和局部真实。软计算还具有易于使用、功能强大、可靠有效和成本低廉的特点。在这篇综述性论文中,我们要特别强调软计算对油气藏智能描述和勘探的作用。
简介:为了识别三维地震数据和生产测井数据之间的非线性关系和映射,开发出了的一种综合方法。该方法在一个在产油田得到了应用。它采用了诸如地质统计和传统的模式识别等常规技术,并结合现代的软计算(softcomputing)技术(神经计算学、模糊逻辑学、遗传计算学和概率推理学等)。我们的一个重要研究目的,是在三维地震数据和现有的生产测井数据的基础上,利用聚类(clustering)技术确定最佳的新井井位。采用三种方法进行分类:(1)k-平均聚类;(2)模糊c-平均聚类;(3)识别相似数据体的神经网络聚类。在井筒周围可以识别聚类组(duster)与生产测井数据的关系,所得结果用于在远离并筒方向上重建和外插生产测井数据。这种先进的三维地震和测井数据分析与解释技术可用于:(1)确定生产数据和地震数据之间的映射;(2)在多属性分析的基础上预测油藏连续性;(3)预测产层;(4)优化井位。
简介:地震分辨率是地震数据处理和偏移成像中的重要问题。从Ricker(1953)开始研究地震分辨率至今已50多年了,但大部分的研究集中在原始地震观测道的垂向分辨率上。近年来开始引进和讨论地震偏移成像空间分辨率的概念。Beylcin(1985)、Wu和Toksoz(1987)、Seggem(1994)、Vermmer(1998)、Chen和Schu—stet。(1999)等人做过成像分辨率的研究,但都是定性的实验分析,研究了影响地震成像分辨率的若干因素。我和几位合作者(2002)提出了地震成像分辨率的定量计算公式。本文从理论上完善了地震成像分辨率的分析并进行了一些实验。影响地震成像空间分辨率有8项因素。在三维情况下它们为地震波的频率f、波的传播速度v、炮检距2h、炮检距中点M距坐标原点O的水平距离L、中点M与原点O连接线的方位角a、成像点深度z0、成像分辨率表现方向的水平方向角θ和其与正Z轴的夹角β。每个因素均有不同的作用,其中频率和速度可合并为波长λ。这些因素可分为3种类型:第一种是观测参数,如λ和h;第二种是成像孔径参数,如L和a;第三种为地质参数,如z0、β和θ。为了提高成像分辨率要考虑以下几个重要的成像空间分辨率性质:①成像分辨率随波长的减小而提高;②成像分辨率随成像点的深度增大而降低;③成像孔径内最大炮检距地震道的限定空间分辨力为λ/2;④最大分辨率的地面道位于(Lm,θm)点(Lm=z0tanβ,θm是给定的),为提高成像分辨率,孔径中点应在(Lm,θm),孔径大小由最远道的空间分辨力(λ/2)所限定。本文还讨论了叠前偏移和叠后偏移的空间分辨率。指出振幅保真地震偏移问题应当和高分辨率成像问题同时研究。