简介:摘要 : 针对温室番茄智能化管理需要,研究茎秆、叶片和绿果等 3类相近色目标的多波段图像融合方法,以凸显目标与背景亮度差异,提高目标视觉识别效率。根据其各自在 300~1000 nm范围的反射光谱特征差异,建立了针对其光谱数据分类的 Lasso正则化逻辑回归模型。基于模型的稀疏解特征,确定具有较大权值系数的 450、 600和 900 nm等 3个波段作为最优成像波段,在此基础上构建了温室番茄植株多波段图像在线采集系统。结合最优成像波段下相近色目标图像特征分析,提出了基于 NSGA-II的多波段图像加权融合方法,以增强特定目标与近色背景物体的图像亮度差异。最后通过现场试验对多波段图像融合效果进行评估。结果表明,分别以茎秆、叶片和绿果器官作为识别目标,通过多波段图像融合处理后,目标与背景之间的图像灰度差异绝对差值相应达到单波段图像的 2.02、 8.63和 7.89倍,即被识别目标与其他近色背景的亮度差异显著增强,且背景物的亮度波动得到抑制。本研究结果可以为农业环境近色目标视觉识别相关研究提供参考。
简介:摘要 : 水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带 RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用 YLS-D系列植株营养测定仪测量玉米植株的氮素和水分含量等营养信息,根据这些信息将采集的图像分为 3个等级(每个等级共包含 530幅五通道图像,其中 480幅作为训练集, 50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于 TensorFlow深度学习框架搭建了 ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像和多光谱图像,能够输出玉米的营养状况等级和 GPS 信息,识别彩色图像模型在验证集的正确率为 84.7%,识别多光谱图像模型在验证集的正确率为 90.5%,模型训练平均时间为 4.5h,五通道图像识别平均用时为 3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法和依据。
简介:摘要 : 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于 WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度 GNSS定位系统前提下的作业面积的计算方法、 GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。
简介:<正>湖南化工研究院创建于1951年,主要从事农药、精细化工、无机功能材料等领域新技术、新产品的研究和工程技术开发,是国家农药创制工程技术研究中心的依托单位。下设5个专业研究所和4个技术服务中心,现有科研人员160余人,其中高级职称58人、中级职称66人,博士6人、硕士19人。拥有国家氨基甲酸酯类农药工业性试验基地、湖南省农用化学品重点实验室、湖南省化肥农药质量监督检验授权站、湖南省化工信息中心,与国内6所高校联合建有农药学、有机化学、化学工程等专业博士点和硕士点;国家农药创制工程技术研究中心在农药技术研究与开发方面已形成了集新化合物设计与合成、结构表征、生物活性筛选、工艺研究、工程技术开发、应用技术研究以及信息咨询等于一体的较为完整的应用基础与应用开发研究体系。