学科分类
/ 1
6 个结果
  • 简介:[目的/意义]针对现有规模化猪场生猪计数需求场景多,人工计数效率低、成本高等问题,提出一种基于改进实例分割深度学习算法和微信公众平台的区域养殖生猪计数方法.[方法]首先,利用智能手机拍摄养殖场猪只视频,对视频抽帧进一步生成图像数据集.其次,通过改进卷积块注意力模块(Convolutional Block Attention Module,CBAM)中忽略通道与空间相互作用及通道注意力中降维操作带来的效率较低问题,提出高效全局注意力模块,并将该模块引入基于回归分析的单阶段实例分割网络YOLO(You Only Look Once)v8中对获取的生猪图像进行分割,构建新的识别模型YOLOv8x-Ours,以实现高精度的生猪计数.最后,基于微信公众平台开发微信小程序,并嵌入综合表现最优的生猪计数模型,实现使用智能手机拍摄图像进行生猪快速计数.[结果和讨论]在测试集上的试验结果表明,与现有实例分割模型..

  • 标签: 生猪计数深度学习微信小程序YOLOv8实例分割
  • 简介:[目的/意义]随着奶牛养殖业向规模化、精准化和信息化养殖迅速发展,对奶牛健康的监测和管理需求也日益增加.实时监测奶牛的反刍行为对于第一时间获取奶牛健康的相关信息以及预测奶牛疾病具有至关重要的意义.目前,针对奶牛反刍行为的监测已经提出了多种策略,包括基于视频监控、声音识别、传感器监测等方法,但是这些方法普遍存在实时不足的问题.为了减轻数据传输的数量与云端计算量,实现对奶牛反刍行为的实时监测,基于边缘计算的思想提出了一种实时对奶牛反刍行为进行监测的方法.[方法]使用自主设计的边缘设备实时地采集并处理奶牛的六轴加速度信号,基于六轴数据提出了基于联邦式与拆分式边缘智能这两种不同的策略对奶牛反刍行为实时识别方法展开研究.在基于联邦式边缘智能的奶牛反刍行为实时识别方法研究中,通过协同注意力机制改进MobileNet v3网络提出了...

  • 标签: 奶牛反刍行为实时监测边缘计算改进MobileNet v3边缘智能模型Bi-LSTM
  • 简介:[目的/意义]牛的体尺参数是反映牛身体发育状况的关键指标,也是牛选育过程的关键因素.为解决规模化肉牛牧场复杂环境对肉牛体尺的测量需求,设计了一种图像采集装置以及体尺自动测量算法.[方法]首先搭建肉牛行走通道,当肉牛通过通道后进入限制装置,用英特尔双目深度相机D455对牛只右侧图像进行RGB与深度图的采集.其次,为避免复杂环境背景的影响,提出一种改进后的实例分割网络Mask2former来对牛只二维图进行前景轮廓提取,对轮廓进行区间划分,利用计算曲率分析方法找到所需体尺测点.然后,将原始深度图转换为点云数据,对点云进行点云滤波、分割和深度图牛只区域的空值填充,以保留牛体区域的点云完整,从而找到所需测点并返回到二维数据中.最后,将二维像素点投影到三维点云中,利用相机参数计算出投影点的世界坐标,从而进行体尺的自动化计算,最终提取肉牛体高、十...

  • 标签: 肉牛体尺测量深度学习点云分割实例分割注意力机制Mask2former
  • 简介:[目的/意义]小麦叶片数是衡量植株生长状况、确定茎蘖动态、调节群体结构的重要指标之一.目前大田环境下小麦叶片计数主要依靠人工、耗时耗力,而现有的自动化检测计数方法的效率与精度难以满足实际应用需求.为提高小麦叶片数检测的准确,设计了一种复杂大田环境下高效识别小麦叶尖的算法.[方法]本研究以手机和田间摄像头获取的可见光图像构建了两种典型光照条件下出苗期、分蘖期、越冬期等多个生长期的小麦叶片图像数据集.以YOLOv8为基础网络,融合坐标注意力机制降低背景环境的干扰,提高模型对小麦叶尖轮廓信息的提取能力;替换损失函数加快模型收敛速度;增加小目标检测层提高对小麦叶尖的识别效果,降低漏检率.设计了一种适用于叶尖小目标识别的深度学习网络,通过检测图像叶尖数量从而得出叶片数.[结果与讨论]本研究提出的方法对小麦叶尖的识别精确率和mAP...

  • 标签: 小麦叶片叶尖识别叶片计数注意力机制YOLOv8深度学习
  • 简介:[目的/意义]准确高效地获取马匹体尺信息是马产业现代化进程中的关键环节.传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应.因此,实现准确且高效的体尺参数自动测量对于制定蒙古马早期育种计划至关重要.[方法]选择Azure Kinect深度相机获取蒙古马双侧RGB-D数据,以YOLOv8n-pose为基础,通过在C2f模块中引入可变形卷积(Deformable Convolution v2,DCNv2),同时添加洗牌注意力机制(Shuffle Atten-tion,SA)模块和优化损失函数(SCYLLA-IoU Loss,SIoU)的方法,利用余弦退火法动态调整学习率,提出一种名为DSS-YOLO(DCNv2-SA-SIoU-YOLO)的模型用于蒙古马体尺关键点的检测.其次,将RGB图中的二维关键点坐标与深度图中对应深度值相结合,得到关键点三维坐标,并实现蒙古马点云信息的转换.利用直通滤波、随机抽样一致(Random Sample Consensu...

  • 标签: 蒙古马体尺测量卷积神经网络注意力机制三维点云处理YOLOv8n-pose
  • 简介:摘要 : 叶片湿润时间( LWD)是植物病害模型的重要输入变量之一,它与许多叶部病原菌的侵染有关,影响病原侵染和发育速率。为了准确地预测日光温室黄瓜病害的发生时间和方位,本研究于 2019年 3月和 9月在北京两个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器和目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射和叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型在两个温室的试验条件下获得了相似的准确度( ACC为 0.90和 0.92),比相对湿度经验模型估算叶片湿润时间的准确度( ACC为 0.82和 0.84)更高,平均绝对误差 MAE分别为 1.81和 1.61 h,均方根误差 RSME分别为 2.10和 1.87,决定系数 R2分别为 0.87和 0.85;在晴天和多云天气条件下,叶片湿润时间的空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长的区域;由东向西方向上,叶片湿润时间的空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短的区域;雨天的叶片湿润平均时间比晴天和多云长,春季和秋季分别为 17.15和 17.41 h/d。这些变化和差异对温室黄瓜种群水平方向的叶片湿润时间分布具有重要影响,与大多数高湿黄瓜病害的发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值的参考,对控制病害流行和减少农药使用具有重要意义,提出的区域化分析温室内叶片湿润时间的方法,可以为模拟日光温室叶片湿润时间的空间分布提供参考。

  • 标签: 日光温室 估算模型 区域化 叶片湿润时间 BP神经网络 传感器