简介:摘要 : 叶片湿润时间( LWD)是植物病害模型的重要输入变量之一,它与许多叶部病原菌的侵染有关,影响病原侵染和发育速率。为了准确地预测日光温室黄瓜病害的发生时间和方位,本研究于 2019年 3月和 9月在北京两个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器和目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射和叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型在两个温室的试验条件下获得了相似的准确度( ACC为 0.90和 0.92),比相对湿度经验模型估算叶片湿润时间的准确度( ACC为 0.82和 0.84)更高,平均绝对误差 MAE分别为 1.81和 1.61 h,均方根误差 RSME分别为 2.10和 1.87,决定系数 R2分别为 0.87和 0.85;在晴天和多云天气条件下,叶片湿润时间的空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长的区域;由东向西方向上,叶片湿润时间的空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短的区域;雨天的叶片湿润平均时间比晴天和多云长,春季和秋季分别为 17.15和 17.41 h/d。这些变化和差异对温室黄瓜种群水平方向的叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害的发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值的参考,对控制病害流行和减少农药使用具有重要意义,提出的区域化分析温室内叶片湿润时间的方法,可以为模拟日光温室叶片湿润时间的空间分布提供参考。
简介:[目的/意义]智慧农业科技是农业领域又一次新技术革命,具备农业新质生产力"高科技、高效能、高质量、可持续"的内在特征,已成为推进农业新质生产力发展的重要内核与引擎.[进展]本文对智慧农业科技创新的现实基础、内在逻辑与问题挑战开展系统研究,结论表明中国"表型+基因型+环境型"智能育种已迈入快车道,农业天、空、地信息感知技术体系逐渐成熟,农业大数据与智能决策技术研究探索不断推进,面向不同领域的智能农机装备创制取得丰硕成果.智慧农业科技创新通过赋能农业要素、技术、场景、主体与价值,推动农业新质生产力发展.但也面临科技创新政策体系不健全、关键技术存在卡点堵点断点、科创成果转化落地难度较大、支撑体系不够完备等重大挑战.[结论/展望]聚焦问题导向,提出了中国智慧农业科技创新平台、技术、场景、人才的"四高"路径,并围绕顶层设计、政策供...