学科分类
/ 1
14 个结果
  • 简介:神奇的“超级电容”超级电容,也称电化学电容,是基于高比表面积炭电极/电解液界面产生的双电层电容,或者基于过渡金属氧化物或导电聚合物的表面及体相所发生的氧化还原反应来实现能量的储存。其构造与电池类似,主要包括正负电极、电解液、隔膜和集流体。作为一种新型储能装置,超级电容具有输出功率高、充电时间短、使用寿命长、工作温度范围宽、安全且无污染等优点,有望成为本世纪新型的绿色电源。

  • 标签: 超级电容器 过渡金属氧化物 高比表面积 石墨 电化学电容器 氧化还原反应
  • 简介:<正>数秒钟内完成充电,可以让您的笔记本电脑至少工作一个月,创新型的大功率超级电容(Supercapacitors)是欧盟第七研发框架计划(FP7)提供全额资助、由瑞典查尔姆斯理工大学(ChalmersUniversityofTechnology)伽里.基纳瑞(JariKINARET)教授领导的、欧洲AUTOSUPERCAP研发团队

  • 标签: 超级电容器 基纳 笔记本电脑 伽里 石墨烯 存储装置
  • 简介:概括介绍了电容用钽铌粉的研究进展,介绍了钽粉的3种钠还原制备方法的化学反应机理并进行了比较,同时还介绍了铌粉的制备方法,包括铝热还原法、电解还原法、蒸气还原法、钠还原法和金属热还原法;阐述了钽铌粉中杂质的测定方法以及有关钽铌粉的其它研究进展。

  • 标签: 钽粉 铌粉 钠还原法 杂质 电容器
  • 简介:富士重工计划开发使用锂离子电容(LIC)替代铅蓄电池的技术。LIC是使用电双层电容的活性炭作为正极活物质、使用锂离子充电电池的碳素材料作为负极活物质的混合型电容。正极和负极的集电体均使用多孔箔,通过使负极和锂金属箔短路,可以在电池单元内部容易地把锂离子掺杂到负极上。与以往的传统的锂离子充电电池不同,由于锂源不依存于正极,正负极活物质量的比例和充电深度的设计自由度较高。因此,能够在确保可靠度和输出密度与电双层电容相当的同时,使其拥有等同于充电电池的能量密度。

  • 标签: 锂离子充电电池 离子电容器 铅蓄电池 电双层电容器 能量密度 正负极
  • 简介:综述聚吡咯固体片式铝电解电容的研究进展,介绍聚吡咯固体片式铝电解电容性能的影响因素以及改进措施,展望今后聚吡咯固体片式铝电解电容的发展前景。

  • 标签: 聚吡咯 化学聚合 铝电解电容器
  • 简介:石墨烯具有优异的物理、化学和力学性能,成为近年来的研究热点。尤其是其良好的导电性能和大的比表面积,使其在电化学领域中有着巨大的应用前景。综述了石墨烯的主要制备方法,重点介绍了石墨烯及其复合材料在超级电容中的主要制备方法和应用研究,并对其未来的应用前景进行了展望。

  • 标签: 石墨烯 复合材料 超级电容器
  • 简介:据媒体报道,日本三井金属开发出了容量高达原产品500倍、达到1μF/cm~2、内置在底板中使用的电容材料"AEC-1"。AEC-1薄到可内置于多层底板中,通过在底板上内置该材料,可削减安装成本、减小底板面积、

  • 标签: 电容器材料 底板 金属箔 开发成功 电极材料 产品
  • 简介:以一步水热法制备了具有分级结构的泡沫镍@C/氧化钴复合电极材料,研究了该材料的微观形貌结构以及其超级电容特性.结果表明,在1mol/LKOH溶液中,泡沫镍@C/Co3O4复合超级电容电极材料电化学性能良好,面积比容量达1400mF/cm2.

  • 标签: 氧化钴 超级电容器 一步水热法
  • 简介:由于超级电容寿命长、充电时间短,并且没有化学反应所带来的污染及蓄电池的记忆问题,加之可瞬时提供大功率电流,超级电容被许多专家誉为是纯电动汽车的理想高功率提供者。

  • 标签: 超级电容器 纯电动汽车 车前 助推 高能 充电时间
  • 简介:Pb-B-Si系低熔点玻璃是一种具有较好封接性能的玻璃粉,将其应用在不锈钢真空保温容器无尾封接中存在真空烧结时气泡消除缓慢、强度不够等问题。通过对Pb-B-Si系玻璃进行配方优化调节后,对玻璃粉进行性能检测,对焊点形貌等进行研究,采用扫描电镜分析了烧结层的微观结构。结果表明,优化后的配方体系为Pb-B-Si-ZnAl-CuO,其中Pb为83%,CuO为3.5%(质量分数)时,可以显著提高无尾封接时的强度,提高真空度。使用该玻璃粉生产的不锈钢真空容器的焊点饱满、光亮,接头强度好,无明显缺陷,显示其对不锈钢容器良好的封接强度。

  • 标签: Pb-B-Si系玻璃 不锈钢真空容器 无尾封接 封接强度
  • 简介:据报道,NASA于2017年5月16日将复合材料压力容器(COPV)搭载探空火箭进行飞行试验,以测试拉伸强度并将其与传统碳纤维/环氧树脂复合材料结构进行对比。NASA研究人员表示此次试验是碳纳米管复合材料首次以结构部件的大结构件形态进行飞行试验。NASA和很多研究中心都参与了COPV项目,包括格伦研究中心、兰利研究中心、马歇尔航天飞行中心,此外,工业界也参与其中。

  • 标签: 碳纳米管复合材料 飞行试验 NASA 压力容器 研发 复合材料结构