学科分类
/ 1
3 个结果
  • 简介:在数据驱动的集中式空调系统故障诊断过程中,特征选择是一个必要的预处理.选取重要的特征作为分类依据,无论是从经济的角度还是对故障的有效判断上,都具有非常重要的意义.现采用不同的特征选择方法对一组冷水机组故障数据进行特征选取,并利用支持向量机完成分类,最后通过对比分析获取冷水机组故障诊断中最重要的特征子集.

  • 标签: 特征选择 遗传算法 RELIEFF算法 支持向量机
  • 简介:为解决空气处理机组在故障检测过程中难以获得大量带有类标记样本,且故障样本数据标记代价较高的问题,本文结合支持向量机与半监督学习方法,提出了针对空气处理机组故障检测的半监督学习算法.首先利用序列前向选择选出重要的特征作为分类依据,将半监督学习方法引入支持向量机的学习过程中,并使用遗传算法寻找支持向量机的最佳参数.然后选择类标记置信度高的未标记样本加入训练样本集,利用未标记样本中有利于支持向量机的信息,提高学习性能.实验表明,提出的混合算法能够在故障标记样本比较少的情况下达到较高的故障诊断率.

  • 标签: 故障检测 半监督 遗传算法 支持向量机 特征选择 空气处理机组
  • 简介:针对观缆车主轴系统难以拆卸的特点,将声发射检测技术应用于观缆车轴承的故障诊断中,提出一种经验模态分解(Empiricalmodedecomposition,EMD)与近似熵相结合的观缆车轴承故障诊断方法.即利用观缆车试验台对滚动轴承无故障、内圈故障和滚动体故障进行模拟,采集其声发射信号.通过EMD方法将获取的声发射信号分解为若干个本征模态函数(Intrinsicmodefunction,IMF)分量,然后利用能量和相关系数法选取IMF分量,最后对筛选的IMF分量进行近似熵计算.实验结果表明,该方法能够有效判断观缆车滚动轴承是否存在故障.

  • 标签: 声发射 经验模态分解 近似熵 故障诊断