简介:车道线检测是智能驾驶系统的重要组成部分,它提供了车辆与车道位置关系的信息.针对智能车辆驾驶系统在视觉导航过程中车道线检测的精确性和鲁棒性的问题,提出一种有效的车道线检测方法.首先对原始RGB图像分别进行感兴趣区域设定、逆透视变换、灰度化和阈值处理;然后进行霍夫变换处理,利用斜率和中心点位置筛选检测结果;最后利用卡尔曼滤波对检测到的线段进行跟踪,预测当前车道线位置.实验结果表明,该算法能够有效解决图像中车道线不清晰以及一些干扰遮挡的问题,车道线检测准确率可达94%,具有较好的准确性、鲁棒性和较低的计算复杂度,有利于实时性检测系统的构建.
简介:对火焰原子吸收分光光度法测定碳素钢中铜含量的测量不确定度进行了分析,分析了测量不确定度的主要来源,并对各不确定度分量进行了评定,求得合成标准不确定度和扩展不确定度分别为0.00071%和0.0014%.