学科分类
/ 4
68 个结果
  • 简介:研究类具有维自治常微分方程组形式的新的类Chen系统的余维二分岔.首先通过坐标变换,把原系统的平衡点平移到新系统的原点.通过对平移后所得新系统的Jacobi矩阵的分析,推导系统发生余维二Bautin分岔的参数条件.借助计算机对类Chen系统进行数值仿真,得到该系统发生Bautin分岔的分岔图,与理论推导结果相符合,从而验证了理论推导的正确性.

  • 标签: 类chen系统 余维二 Bautin分岔 数值仿真
  • 简介:用直接积分法计算个耦合VanderPol振子系统的阶近似守恒量,将个耦合VanderPol振子系统看成是未受微扰系统与微扰项的迭加,先通过坐标变换将未受微扰系统解耦,并对解耦系统的3种可能状态进行讨论,得到未受微扰系统的13个精确守恒量,再考虑微扰项对精确守恒量的影响,运用阶近似守恒量的性质,得到1个稳定的阶近似守恒量.另外,由13个精确守恒量直接得到13个平凡的阶近似守恒量.

  • 标签: VAN der Pol振子系统 精确守恒量 一阶近似守恒量
  • 简介:根据维混沌系统Lorenz吸引子和Chen’s吸引子线性部分的系数特征,构造了维非线性动力系统,并研究了其混沌动力学特征,包括相轨迹图、最大Lyapunov指数、Lyapunov指数谱和Poincare映射,这些特征都表明,该系统具有混沌吸引子。

  • 标签: 混沌反控制 三维混沌系统 LYAPUNOV指数 POINCARE映射
  • 简介:利用加性掩盖和函数调制种混沌加密方式对模拟信号进行加密,分别从幅值和频率方面分析加性掩盖方式和函数调制方式,对比种加密方式加密效果,了解种加密方式的差异.计算结果表明:函数调制方式在幅值和频率的范围上都好于加性掩盖方式的幅值和频率范围,函数调制方式比加性掩盖方式更具安全性.

  • 标签: 混沌加密 加性掩盖 函数调制 模拟信号
  • 简介:建立了自由度点碰撞振动系统的动力学模型,给出了碰撞振动系统产生粘滞的条件,分析了系统存在的粘滞运动,采用打靶法,利用变步长逐次迭代逼近的方法求解系统的不稳定的周期碰撞运动,即Poincare截面上的不动点,通过对自由度点碰撞振动系统进行数值模拟显示了系统在定参数条件下存在周期倍化分叉和Hopf分叉,同时通过数值模拟的方法得到了以自由度点碰撞振动系统Poincare截面上的不变圈表示的拟周期响应,并进步分析了随着分岔参数的变化,自由度点碰撞振动系统周期运动经拟周期分叉和周期倍化分叉向混沌的演化路径。

  • 标签: 碰撞振动 两点碰撞 周期运动 POINCARE映射 分叉 混沌
  • 简介:以单壁纳米碳为例,建立了其分子动力学模型,并对(5,5)和(10,10)扶手椅型纳米碳与刚性壁的正碰撞过程和简谐纵波传播过程进行了模拟.在此基础上,探讨如何用弹性杆模型来研究纳米碳的动力学问题.研究表明,弹性杆模型可以描述单壁扶手椅型纳米碳与刚性壁高速碰撞的动力学行为;对于纵波传播中的色散描述,则需在弹性杆模型中计入纳米碳微结构引起的非局部弹性效应.

  • 标签: 纳米碳管 冲击 色散 分子动力学模拟
  • 简介:基于种齿轮碰撞模型进行数值和实验的研究比较:(1)含啮合间隙的刚性碰撞齿轮系统,假设轮齿间的碰撞在瞬间完成,边界为刚性;(2)含弹性约束和啮合间隙的弹性碰撞齿轮系统,空隙范围内部齿轮自由运动,边界为弹性,用无质量弹簧阻尼器描述.文中主要通过实验研究对种齿轮接触模型的动力学响应进行分析比较:首先用实验结果验证数值仿真的正确性,之后对种不同的齿轮传动系统在不同参数下的实验数据和仿真结果分别进行比较,并对种不同的齿轮传动系统所展现的复杂动力学现象进行分析.

  • 标签: 齿轮传动 碰撞 实验 频谱
  • 简介:将广义微分求积法(GDQR)用于分析输流曲的流致振动问题,这是个新的尝试.基于输流曲的面内振动微分方程,利用GDQR法使曲系统在空间域上得以离散化,从而获得了输流曲的动力学方程组.数值算例中,计算得到了输流曲在几种典型边界条件下的固有频率以及曲发生失稳的临界流速等,这些计算结果与前人的解析解结果吻合较好.此外,还给出了端固定输流曲典型的动力响应行为.研究表明,GDQR法极易处理输流曲类动力学模型,精度令人满意,进步的研究可望推广到输流管道的非线性振动分析中.

  • 标签: QR法 流致振动 GD 广义微分求积法 振动微分方程 动力学方程组
  • 简介:研究了端受扭转弹簧约束的简支输流管道的固有频率特性和静态失稳临界流速.根据梁模型横向弯曲振动模态函数,由端部支承和约束边界条件得到了其模态函数的般表达式.根据动力方程的特征方程,具体分析了约束弹性刚度、流体压强、流速和截面轴向力等参数对管道固有频率特性和静态失稳临界流速的影响.数值分析表明,约束弹性刚度的增大使管道的固有频率和失稳临界流速明显提高;流体流速、压强和截面受到的轴向压力的增加使管道的固有频率和失稳临界流速降低.当管道的固有频率和失稳临界流速较低时,可以通过增加端部约束的方法来提高.

  • 标签: 输流管道 简支 弹性约束 固有频率 临界流速
  • 简介:摄动法近似应当保辛.本文指出,有限元位移法自动保辛,有限元混合能表示也保辛.摄动法的刚度阵Taylor级数展开能证明保辛;混合能的Taylor级数展开摄动也证明了保辛.但传递辛矩阵的Taylor级数展开摄动却不能保辛.辛矩阵只能在乘法群下保辛,故传递辛矩阵的保辛摄动必须采用正则变换的乘法.虽然刚度阵加法摄动、混合能矩阵加法摄动与传递辛矩阵正则变换乘法摄动都保辛,但这3种摄动近似并不相同.最后通过数值例题给出了对比.

  • 标签: Taylor级数展开 数值比较 正则变换 辛矩阵 混合能 矩阵加法
  • 简介:考虑环境阻尼因素的影响,研究了具有运动约束作用Kelvin-Voigt型输流曲的混沌运动现象.数值仿真表明,输流曲系统在某些参数取值时具有混沌运动的可能,管道材料的粘弹性系数和环境阻尼等因素对曲的动力响应产生较大的影响.这些结论可为工程管道系统的铺设与设计提供参考.

  • 标签: 混沌运动 阻尼作用 环境 t型 数值仿真 约束作用
  • 简介:本文利用基于Simulink的数值模拟方法研究了高斯色噪声激励下势阱系统的逻辑随机共振现象.首先对于独立的加性和乘性高斯色噪声激励下的势阱系统,发现仅有加性噪声作用不能实现可靠的逻辑操作,但加性噪声和乘性噪声共同作用可诱导良好的逻辑随机共振现象.和高斯白噪声相比较,高斯色噪声激励下能产生可靠逻辑随机共振的(D,Q)平面上的区域范围更大.进步讨论了加性和乘性噪声之间的关联对于逻辑随机共振现象的影响,发现噪声关联对逻辑随机共振现象起着破坏性的作用.

  • 标签: 逻辑随机共振 三势阱系统 高斯色噪声
  • 简介:为全面了解和准确预测质点动力学系统运动特性.本文以具有固定边界的质点动力学系统为例,构建了用于研究双自由度质点运动系统的余量谐波平衡解程序.解程序融合了谐波平衡与同伦方法优势,其高阶近似仅依赖于初始谐波近似,不需要根据前阶近似进行调整.研究结果表明:本文给出的2-阶近似频率比已有的方法结果更加精确,相对误差不同程度减小,相应的近似响应与数值解更加吻合.因此,余量谐波平衡方法可广泛应用于其它质点动力学问题研究中.

  • 标签: 双自由度振动系统 余量谐波平衡 高阶近似 频率响应
  • 简介:构建了带有延迟的脉冲控制的维股票价格系统,研究了脉冲控制参数和延迟变化对股票价格的稳定性影响.应用脉冲微分方程控制稳定性理论,得到了在带有延迟的脉冲控制系统中,由原先的不稳定和发散达到稳定的保守且充分的条件,从而使股票金融市场达到了个新的持续发展的稳定状态.利用Matlab软件对该系统进行数值仿真,验证了脉冲控制方法的可行性,有效性和提出理论的准确性.结果表明合理脉冲控制可以有效控制带延迟系统的稳定性.

  • 标签: 延迟 股票价格系统 脉冲微分方程 控制 稳定性
  • 简介:个可调节速度的皮带驱动的干摩擦振子系统,设其干摩擦力大小是常值且个激励频率是谐调的,本文对这个简单的力学模型进行了研究,分析了Filippov系统中可能出现的四种余维-1sliding分岔并给出数值模拟.分析表明:该系统具有极其丰富的sliding分叉现象,较小的激励频率易引起非光滑分岔现象.

  • 标签: 非光滑系统 余维-1sliding分岔 Filippov系统
  • 简介:以某型航空发动机高压转子系统为研究对象,基于不均匀分布稳态温度场,建立了某高压转子系统维实体单元有限元模型以及稳态温度场下转子系统热-结构耦合振动方程,利用热-结构-动力学耦合理论,采用间接耦合法,通过稳态温度场分析和静力分析生成热应力,然后进行预应力模态分析,最后利用模态叠加法进行不平衡量和热弯曲耦合响应分析,实现热-结构-动力学耦合计算.通过稳态温度场对典型级盘稳态响应影响的分析以及不平衡量与热弯曲耦合稳态响应分析,发现耦合响应对转子系统各级盘的振动响应有较大影响.

  • 标签: 三维转子系统 有限元法 固有频率 稳态温度场 热弯曲耦合响应
  • 简介:利用维有限元方法,分析了风速、攻角、导线分裂、磁场力和防舞装置等各种因素对导线舞动的影响.结果表明:风速、攻角和导线分裂等对导线舞动的影响很大;磁场力的影响很小.为减轻和防止导线舞动,在导线距离杆塔1/3和2/3处施加压重,可以获得明显的防舞效果.

  • 标签: 输电导线 三维有限元 导线舞动 攻角 导线分裂 振动现象
  • 简介:研究维分段不连续映射的边界碰撞分岔问题,推导了周期n解的边界碰撞分岔曲线及fold分岔条件,通过数值仿真验证了这些条件的正确性.研究发现系统存在周期增加序列和周期叠加序列.最后,对分段不连续映射进行参数分岔研究,揭示了系统各参数对其动力学行为的综合影响.

  • 标签: 分段映射 边界碰撞分岔 周期叠加 周期增加
  • 简介:为分析类含间隙结构的振动特性及为保护特定子结构而预留间隙的合理性,根据其振动试验结果,采用假设模态法的思想,将该类带间隙的非线性结构按其子结构的阶弯曲模态简化为带间隙的单自由度与二自由度弹簧-质量系统,分析了不同激励条件下间隙对系统动力学响应的影响.分析结果表明:此类结构中,间隙具有阻碍振动传递的性质,预留间隙是合理的.

  • 标签: 间隙 假设模态法 固有频率 主共振 超谐共振