学科分类
/ 3
42 个结果
  • 简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的谐周期运动的存在性判据,并能精确地找到谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:用一个分段线性单峰映射描述了二次映射Feigenbaum吸引子的数学结构,证明了存在一个周期2n的正则Fμ-圈嵌套序列,由其生成的吸引的极小Cantor集与单边符号空间的一个所谓"加法器"拓扑共轭.对现有结果作了若干补充和简化证明.

  • 标签: 二次映射 Feigenbaum吸引子 加法器
  • 简介:针对结构振动的中频问题,提出了一种新的混合分析方法.具有低模态密度的子结构利用有限元建模,高模态密度子结构利用波动方法建模,并利用边界处的位移连续和力平衡条件进行求解.以耦合梁结构为例,给出了具体的计算过程,通过解析方法进行了仿真验证.结果表明了此混合方法的有效性.进一步地计算了高频子结构的能量密度响应,并且通过对比说明,此方法在计算边界位置的能量密度响应时可以得到精确度更高的结果.

  • 标签: 波动 有限元法 中频振动 混合方法 能量密度
  • 简介:分析力学历来是在动力学范围内论述的,结构力学与最优控制模拟关系的共同基础就是分析力学.这表明在结构力学与最优控制理论的架构内也应有分析力学的整套理论.本文就结构力学讲述分析力学,称分析结构力学.保守体系可用Hamilton体系的方法描述,其特点是保辛.保辛给出保守体系结构最重要的特性.有限元法是从结构力学发展的,有限元的单元刚度阵应保持对称性,其实这就是保辛.根据区段单元变形能只与其两端位移有关,就可通过数学分析得到Lagrange括号与Poisson括号,展示了其辛对偶体系、正则方程、正则变换等的内容.

  • 标签: 分析结构力学 有限元 保辛 正则变换 动力学 分析力学
  • 简介:针对工程中需要从火箭结构系统的整体模态中识别纵向模态,根据模态有效质量理论,提出了一种识别火箭结构系统纵向模态的自动辨识方法.以具有集中质量系统的振动特性作为算例,通过有限元软件,建立了具有集中质量系统的梁模型,利用自动辨识的方法,自动辨识出系统的纵向模态,并与应用模态分析法所计算的系统模态信息相比较,这种自动辨识方法不仅能准确的辨识出振动系统的纵向模态,而且还具有自动高效的识别特点.为准确快速建立液体火箭POGO振动系统的动力学模型等工程系统的模型提供理论依据.

  • 标签: 火箭结构系统 纵向模态 模态有效质量 自动辨识 模态分析
  • 简介:叶片与轮盘之间的榫联结构存在接触和摩擦组合运动,在较高的热-机械载荷作用下容易发生微动磨损并导致疲劳破坏.本文采用有限元法对叶片.轮盘榫联结构进行接触分析,计算不同摩擦系数和不同转速情况下的叶片榫头和轮盘榫槽之间的接触压力、接触滑动距离.结果表明,摩擦系数增大,榫联结构接触面上的接触压力和滑动距离减小;转速增加,则接触压力和滑动距离增大.

  • 标签: 叶片-轮盘 榫联结构 有限元法 接触分析
  • 简介:结合克拉玛依市科技博物馆工程,对超限倾斜结构设定性能设计目标,并针对性能目标提出抗震措施及抗震构造措施.考虑结构材料的非线性属性,采用静力非线性分析方法,分析倾斜框架-剪力墙结构在地震作用下的响应,尤其是结构在罕遇地震作用下的非线性动力特性.基于罕遇地震的弹塑性时程分析表明,最大层间位移角满足1/100的限值条件.结构在罕遇地震下也是安全可靠的,剪力墙尚处在弹性范围,未出现塑性铰,形成有利的抗震防线,连梁及框架、斜撑均出现塑性铰.其中连梁的塑性程度较深,充分发挥耗能构件性能,在大震后需修复后方可使用,而框架梁及柱塑性铰程度较浅,可不经修复直接投入使用.

  • 标签: 超限结构 塑性铰 耗能能力 非线性
  • 简介:针对C/SiC轻质复合材料结构,将三维编织C/SiC复合材料看作是组分材料的空间结构物,由有序的细观结构单胞叠合而成。采用细观结构单胞作为离散单元对三维编织复合材料结构进行宏观网格剖分,利用有限元方法研究复合材料悬臂板动态特性,计算结果与理论值符合较好。

  • 标签: 复合材料 三维编织 单胞模型 动态特性
  • 简介:研究了不确定参数的Lorenz系统和Rossler系统的异结构同步问题.基于Lyapunov稳定性理论,采用主动同步,自适应同步两种方法实现异结构混沌系统的同步,并且利用数值模拟来阐释理论的有效性.

  • 标签: 混沌系统 主动同步 自适应同步 LYAPUNOV稳定性理论
  • 简介:当机械臂的质量很轻,尤其是空间应用场合,机器人系统将受到高度柔性限制并且不可避免地产生机械振动.本文为了证实提出的控制不期望残余振动的方法,设计并建立了柔性机器人实验平台.控制方案采用交流伺服电机通过谐波齿轮减速器驱动柔性机械臂,利用粘贴在柔性臂上的压电陶瓷片(PZT)作为传感器来检测柔性臂的振动.对由于环境激励,尤其是在电机转动(机动)时由于电机力矩产生的振动,采用了几种主动振动控制器:包括模态PD控制,软变结构控制(VSC)和增益选择变结构方法,进行柔性臂的振动主动控制实验研究.通过实验比较研究,结果表明采用的控制方法可以快速抑制柔性结构的振动,采用的控制方法是有效的.

  • 标签: 柔性机械臂 主动振动控制 压电结构 变结构控制
  • 简介:为分析一类含间隙结构的振动特性及为保护特定子结构而预留间隙的合理性,根据其振动试验结果,采用假设模态法的思想,将该类带间隙的非线性结构按其子结构的一阶弯曲模态简化为带间隙的单自由度与二自由度弹簧-质量系统,分析了不同激励条件下间隙对系统动力学响应的影响.分析结果表明:此类结构中,间隙具有阻碍振动传递的性质,预留间隙是合理的.

  • 标签: 间隙 假设模态法 固有频率 主共振 超谐共振
  • 简介:结构振动测试和损伤诊断中,较易得到结构的低阶模态信息,但低阶模态信息主要反映结构的整体性能,对结构局部损伤不敏感.本文主要研究框架结构高阶模态特性,并通过高阶模态米反映结构的局部特征,实现框架结构损伤诊断.研究中采用理论模态分析和实验模态分析相结合的方法.理论模态分析表明框架结构存在模态密集区且高阶模态具有局部特征.采用局部激振方法对一个钢筋混凝土框架结构模型施加激励,通过实验模态分析获取高阶局部模态信息.结果表明最大能量高阶模态可以识别框架柱的刚度变化.

  • 标签: 模态分析 高阶模态 局部模态 参数识别 框架结构
  • 简介:结构损伤前后动力特性的变化来快速、直接、方便地判定损伤的存在、程度及位置.本文采用曲率模态对刚架结构的损伤检测进行了研究.首先用有限元法计算出结构的位移模态振型,然后用差分法计算出曲率模态振型.数值模拟结果表明:曲率模态振型对结构的损伤敏感,可同时确定结构损伤的存在、程度和位置,并且可以用于结构多位置损伤的检测.实验结果证实了数值模拟结论.

  • 标签: 模态振型 结构损伤检测 差分法计算 动力特性 有限元法 刚架结构
  • 简介:将振型向量与向量空间余弦因子的概念相结合,提出了度量模型整体相关度的定量指标.即计算模型和试验模型的整体相关度指标VM,以此来修改计算模型局部参数的方法.算例表明,相对于传统的方法而言,该方法能更好的表达出计算模型和试验模型之间的相关关系,并且能有效的用于工程实际.

  • 标签: 计算模型 试验模型 局部参数 整体相关度指标
  • 简介:提出了一种基于频响函数扩展的模型修正方法,利用该方法对IASC-ASCESHMBenchmark结构进行了损伤识别.结果表明,该方法能够有效消除模态分析误差,保证修正过程中矩阵物理意义明确,降低测量噪声对修正的影响.在模型误差、测量噪声以及质量刚度分布不确定等因素的影响下,该方法共有较高的损伤识别精度.

  • 标签: 损伤识别 模型修正 扩展 频响函数
  • 简介:首先利用哈密顿原理,将桥梁结构振动微分方程转化为哈密尔顿正则方程形式,然后将精细积分思想的算法引入到辛算法中,形成辛精细积分算法.在时间微段上,将非齐次项正弦/余弦化,得到了荷载识别的辛精细积分格式.与传统Runge-Kutta方法及荷载识别的精细积分格式相比,仿真算例表明本文算法不仅提高了识别精度,而且在长期定量计算中保持了辛算法的稳定性,计算结果不受积分步长的影响,因此可通过增大积分步长,缩短仿真时间,提高计算效率.

  • 标签: 荷载识别 桥梁结构 哈密尔顿系统 辛精细积分 移动荷载 Runge-Kutta方法
  • 简介:考虑水平轴风力发电机组齿轮箱弹性支撑的柔性连接特性,基于集中质量思想和拉格朗日方法,建立风力发电机传动系统多体动力学模型,研究了齿轮箱弹性支撑对传动系统结构动力学特性的影响.利用动力学模型和模态分析方法,得到了由弹性支撑耦合到系统后的模态频率,并获取了在该模态激励下的模态动能分布.采用变参数方法进行传动系统模态对齿轮箱弹性支撑刚度变化的敏感性分析,利用模态叠加法进行齿轮箱体的动响应分析.数值求解结果和分析表明,考虑齿轮箱弹性支撑的传动系统某阶固有频率即为弹性支撑下齿轮箱体振动主模态;弹性支撑线刚度对传动系统低频率固有模态存在一定影响;齿轮箱体振动分析时应考虑1阶和2阶的低频模态较为合理.本研究工作对传动链系统方案可靠性设计和抑制传动链振动的加阻控制提供了一定理论基础.

  • 标签: 风力发电机 传动系统 扭转模态 齿轮箱弹性支撑 动态响应
  • 简介:非线性输出频率响应函数是由Volterra级数发展而来的频域概念,可方便在频域对非线性系统进行分析,它是频率的一维函数.本文主要介绍了利用NARMAX模型以及NOFRF对结构进行损伤检测的方法,并利用实验研究证实了该损伤检测方法的可行性.另外,由于系统非线性特性可用来做结构损伤检测,且具有对系统状态比较敏感的优点,而基于NOFRF的损伤检测方法是利用非线性方法来分析系统的状态,该方法提取出的特征属于非线性特征,所以该损伤检测方法可以用来做结构损伤检测,且具有对系统状态比较敏感的优点.

  • 标签: VOLTERRA级数 NARMAX模型 非线性输出频率响应函数 广义频率响应函数 损伤检测
  • 简介:提出一种以广义柔度矩阵为损伤指标,基于量子粒子群优化算法的结构损伤识别方法.该方法根据结构损伤前后广义柔度矩阵差与结构物理参数变化关系,将结构广义柔度矩阵识别问题转化为优化问题,进而采用系统辨识能力较强的量子粒子群优化算法搜索目标函数最优值,从而达到损伤位置和损伤程度同时识别的双重效果.最后通过简支梁数值模拟对该方法的有效性进行了验证.

  • 标签: 量子粒子群优化算法 广义柔度矩阵 结构损伤识别 损伤位置 损伤程度
  • 简介:采用多重反射法对受到外扰的二组元周期梁结构的频率响应进行了研究.施加至Ⅱ周期梁结构上的外部扰动被假定为一入射波,传播波入射到不连续处会产生反射波和透射波,进而在周期结构中会产生多重的反射和透射.首先,基于波的多重反射,考虑施加扰动的组元上的波场;其次,由于波的透射,分别考虑两个传播方向上的其他组元的波场,作为初始波场;最后,可先考虑某个组元右侧的所有组元上的向左传播的波在其上的叠加,作为一次迭代波场;再考虑某个组元左侧的所有组元上的向右传播的波在其上的叠加,作为二次迭代波场.依次类推,基于多重反射法,叠加了入射波引起的多重反射和透射,得到了所有组元的波场.给出了周期梁结构中任一点的波幅与入射波幅之间的函数关系,确定了受外扰的周期梁结构的传播常数及相应的波场的迭代次数.

  • 标签: 周期结构 弯曲波 波的反射 波的透射 频率响应