简介:伸出织物表面的短、粗纤维末梢是产生贴身纺织品针刺感的主要原因,本质是纤维末梢刺扎并诱发皮肤伤害性机械刺激感受器.通常基于固定-铰接约束条件下弹性压杆轴向压缩稳定性理论,计算纤维末梢的临界压力判断这种感受器的诱发可能性.然而,这种方法忽略了织物握持纤维末梢的强度、纤维末梢接触皮肤的滑动阻力及其柔韧性特征.本文以伸出织物表面的直立纤维末梢为对象,假设其织物握持端为线弹性转动约束、另一端受皮肤的接触反作用力和滑动阻力作用,建立纤维末梢刺扎人体皮肤的弯曲变形力学模型.通过参数化模拟,本文比较分析了纤维末梢在弹性-支撑约束和固定-铰接约束条件下的弯曲变形行为.研究发现,纤维末梢在弹性-支撑约束条件下的弯曲力学行为才能解释其刺扎皮肤产生的大多数力学现象及针刺感现象.
简介:蜂窝夹层结构因其良好的力学特性,在众多工程领域具有非常广泛的应用.本文建立了悬臂边界条件下,蜂窝夹层板的动力学模型并研究其非线性动力学行为.选取文献中更加接近实体有限元解的等效弹性参数公式对蜂窝芯层进行等效简化,得到六角形蜂窝芯的等效弹性参数.基于Reddy高阶剪切变形理论,应用Hamilton原理建立悬臂式蜂窝夹层板在受到面内激励和横向激励联合作用下的偏微分运动方程.然后利用Galerkin方法得到两自由度非自治常微分形式运动方程.在此基础上,通过对悬臂式蜂窝夹层板进行数值模拟分析系统的非线性动力学.结果表明面内激励和横向激励对系统的动力学特性有着重要影响,在不同激励作用下系统会出现周期运动、概周期运动以及混沌运动等复杂的非线性动力学响应.
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.