简介:广义Birkhoff方程是一类更为普遍的约束功学系统的方程.研究定常广义Birkhoff方程的平衡稳定性.建立平衡方程,给出系统的能量变化方程,根据Birkhoff函数的定号性质,建立平衡稳定性的判据.举例说明结果的应用.
简介:基于车辆-轨道耦合动力学和空气动力学提出了一种快速计算横风下高速列车系统动力学行为的平衡状态方法.首先,忽略轨道不平顺并利用流固耦合联合仿真方法计算横风下高速列车的平衡状态;然后,将平衡状态下的气动力加载到车辆一轨道耦合动力学模型并计算高速列车动力学响应.利用建立的平衡状态疗法,研究了列车在速度为13.8m/s的横风下以350km/h速度运行时的流固耦合动力学行为.比较了平衡状态方法和联合仿真方法两种方法下列车姿态、安全性和舒适性指标的差异,计算结果差别在3.26%以内.研究结果表明:平衡状态方法计算横风下高速列车流固耦合的效率更高.
简介:针对俯仰运动贮箱中液体的晃动用变分原理建立了一类新的Lagrange函数,以此为基础可以解析方式来研究俯仰运动贮箱中液体的非线性晃动.首先将速度势函数φ在自由液面处作波高函数η的Taylor级数展开,从而导出自由液面运动学和动力学边界条件非线性方程组;然后用谐波平衡法(HBM)假设其解为各次主导谐波叠加的形式,并代入方程组中得到含有未知系数相应多个代数方程式;最后用Broyden法对代数方程组求解.以无挡板开口二维、刚性矩形贮箱为例,研究了液体的大幅晃动,就液体晃动的幅值而言,在一定激励频率范围内,理论计算值与试验结果吻合较好,同时液面波高出现明显的零点漂移现象.
简介:用数值模拟的方法,研究了Host-Parasitoid模型.该模型是一类非线性离散系统,反映了在一定的时间和空间内,寄生虫和寄宿主之间的生存状态.通过调节各种影响下的分岔参数,可以观察到系统具有周期泡,倍周期分叉,间歇混沌和Hopf分岔等复杂非线性动力学现象,揭示了系统通向混沌的途径.利用不同周期遍历下的奇怪吸引子和具有分形边界的吸引盆对系统的非线性特性进行了深入的探讨.最后利用参数开闭环控制法对系统的混沌状态进行了有效的控制.数值仿真和理论分析表明,选择相应的控制参数可将该系统的混沌状态控制到不同的稳定周期运动.
简介:介绍了一种实数快速傅里叶变换(FFT)的设计原理及实现方法,利用输入序列的对称性,将2N点的实数FFT计算转化为N点复数FFT计算,然后将FFT的N点复数输出序列进行适当的运算组合,获得原实数输入的2N点FFT复数输出序列,使FFT的运算量减少了近一半,很大程度上减少了系统的运算时间,解决了信号处理系统要求实时处理与傅里叶变换运算量大之间的矛盾.同时,给出了在TMS320VC5402DSP上实现实数FFT的软件设计,并比较了执行16,32,64,128,256,512,1024点实数FFT程序代码与相同点数复数FFT的程序代码运行时间.经过实验验证,各项指标均达到了设计要求.
简介:研究了不确定参数的Lorenz系统和Rossler系统的异结构同步问题.基于Lyapunov稳定性理论,采用主动同步,自适应同步两种方法实现异结构混沌系统的同步,并且利用数值模拟来阐释理论的有效性.