学科分类
/ 1
9 个结果
  • 简介:针对可分型矩阵的特性,结合2^N类算法为可分型指数矩阵的计算提出一种快速精细积分法.核心思想是:利用可分型矩阵中的子矩阵进行分块计算;增加Taylor展开式的保留项数,减少迭代次数.一方面,程序实现简便,另一方面,数值算例表明:对矩阵维数很大的可分型指数矩阵计算来说,本文的快速精细积分法减少了计算量和存储量,大大地提高了计算效率.

  • 标签: 可分型指数矩阵 2N类算法 快速精细积分法 子矩阵
  • 简介:提出了一种快速计算变截面铁木辛柯梁横向振动特性的方法.基于铁木辛柯梁理论建立的变截面梁的横向振动方程,其梁的截面参数如有效剪切面积、密度、弯曲刚度、转动惯量等沿梁轴线连续或非连续变化;首先将变截面梁等效为多段均匀阶梯梁;然后基于相邻两段连接处的位移(位移、转角)和力(弯矩、剪力)连续条件,建立相邻两段模态函数间相互关系,并递推出首段段与末段模态函数相互关系,利用边界条件得到相应特征方程,使用Newton—Raphson方法计算其固有频率;最后针对梁常见边界条件,得到计算变截面铁木辛柯梁横向振动固有频率特征方程的具体形式.用该方法计算-变截面梁在常见边界条件下前三阶固有频率.将计算结果同有限元计算结果进行比较,验证所提方法的有效性.然后与欧拉-伯努利梁计算结果比较,验证了本文方法求解短粗梁固有频率具有更好适用性.

  • 标签: 铁木辛柯梁 变截面 固有频率 弯曲振动
  • 简介:对具有重根的广义特征值问题,采用基于快速Fourier变换的方法进行求解,实现重根辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重根.数值算例表明,该方法可有效实现重根辨识,同时特征值的计算能达到较高精度.

  • 标签: 广义特征值问题 重根辨识 快速Fourier变换法 固有频率 动力学响应
  • 简介:针对工程中需要从火箭结构系统的整体模态中识别纵向模态,根据模态有效质量理论,提出了一种识别火箭结构系统纵向模态的自动辨识方法.以具有集中质量系统的振动特性作为算例,通过有限元软件,建立了具有集中质量系统的梁模型,利用自动辨识的方法,自动辨识出系统的纵向模态,并与应用模态分析法所计算的系统模态信息相比较,这种自动辨识方法不仅能准确的辨识出振动系统的纵向模态,而且还具有自动高效的识别特点.为准确快速建立液体火箭POGO振动系统的动力学模型等工程系统的模型提供理论依据.

  • 标签: 火箭结构系统 纵向模态 模态有效质量 自动辨识 模态分析
  • 简介:基于将多体系统拓扑结构的形成看作是一个动态搭建过程,本文提出了一个能够由铰与物体之间关联矩阵自动选取切断铰并自动对物体和铰进行规则标号的算法.利用该算法,在建立系统动力学方程过程中可以采用铰坐标但无需人为选定切断铰,从而在很大程度上简化了输人工作有效地避免了很多人工错误.

  • 标签: 多体系统 闭环 切断铰
  • 简介:针对RockingBlock中的线碰撞问题,首先采用离散思想将线碰撞问题离散为多点碰撞系统,而后基于LZB方法对所建多点碰撞系统进行动力学建模.仿真结果表明随着离散点数的增加,基于LZB方法的多点碰撞模型能够很好地刻画RockingBlock中的相关线碰撞问题,且精度与离散程度紧密相关.

  • 标签: 线碰撞 多点碰撞 非光滑动力学 ROCKING Block
  • 简介:为了协调高速铁道车辆的运动稳定性与曲线通过性能之间的矛盾,本文采用多目标优化方法对一种高速铁道车辆的关键悬挂参数进行了优化处理.采用多体动力学技术建立了某型高速铁道车辆62个自由度的动力学模型,模型考虑了轮轨接触几何非线性、轮轨蠕滑非线性和阻尼非线性等.采用ADAMS—Matlab联合仿真对车辆悬挂系统进行参数改造,使弹簧刚度和阻尼系数均可调.采用基于遗传算法的多目标优化方法对悬挂参数进行优化,使车辆模型能同时满足3种动力学指标.对比优化前后模型的动力学性能可以发现:模型的运动稳定性和曲线通过性能得到显著提高,虽然运行平稳性有小幅降低,但仍能保持在优良的工作状态.

  • 标签: 参数化建模 多目标优化 悬挂系统 遗传算法
  • 简介:选取了三个反映同步程度的指标平均向量场、同步因子和放电概率,数值模拟研究了网络噪声和振子数量对同步行为的影响.随着噪声强度的增大,三个指标都出现了先增加再降低的现象,即发生了相干共振.在不同的耦合强度和噪声强度下,三个同步指标随着振子数量的增加都呈现出了降低的趋势,表明了网络同步行为的减弱.研究结果对如何利用噪声和如何实现网络同步提供了理论参考.

  • 标签: 神经元网络 同步 相干共振 噪声 振子数量
  • 简介:(w,z)参数是一种新的姿态表示方法,它通过两次垂直的旋转来表示卫星姿态,和描述的运动方程相互解耦,可以分别进行控制,有其独特的优点.本文首先推导了(w,z)参数并给出了运动模型,然后针对非对称微卫星的欠驱动姿态再定位控制,采用微分平滑的方法设计了可行的再定位运动轨迹,给出了相应的跟踪控制律,并以PWM(脉宽调制)喷气系统进行仿真,验证了本文方法的有效性.

  • 标签: (w z)参数化 欠驱动 PWM喷气 微分平滑 再定位控制