简介:研究了地震作用下非线性地基中桩基的3次超谐波共振问题.从地基桩中抽象出力学模型,考虑地基的非线性因素,运用Hamilton变分原理建立了桩基的非线性控制方程.利用Galerkin方法离散上述方程,基于多尺度摄动法研究了地震作用下非线性地基中桩的3次超谐波共振问题.以某嵌岩圆形桩为例,研究了地基土层厚度、剪切波速度及频率比对地震力的影响,数值模拟了非线性地基桩的3次超谐波共振响应,探讨了地震力、地基弹性及非弹性系数对超谐波幅频响应的影响,最后研究桩基产生3次超谐波共振时的时间历程曲线.结果表明,当地震波频率约等于桩基固有频率的1/3时,容易激发桩的3次超谐波共振响应;桩基的3次超谐波共振响应随着地震力、非弹性系数的增大而变得更加显著,随着弹性系数的增大而逐渐变小.
简介:对具有重根的广义特征值问题,采用基于快速Fourier变换的方法进行求解,实现重根辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重根.数值算例表明,该方法可有效实现重根辨识,同时特征值的计算能达到较高精度.
简介:根据三维混沌系统Lorenz吸引子和Chen’s吸引子线性部分的系数特征,构造了一个三维非线性动力系统,并研究了其混沌动力学特征,包括相轨迹图、最大Lyapunov指数、Lyapunov指数谱和Poincare映射,这些特征都表明,该系统具有混沌吸引子。