简介:讨论端部受扭矩作用的非圆截面弹性杆平衡形态的混沌现象.混沌的产生来源于抗弯刚度的微幅周期变化.基于Kirchhoff动力学比拟理论列写弹性杆的平衡方程.应用Melnikov方法的解析预测以及Poincaré截面和相轨迹的数值计算证明弹性杆具有Smale马蹄意义下的混沌形态.给出混沌性态与规则性态所对应弹性杆几何形状的对照.
简介:利用平面弹性与板弯曲的相似性理论,用直接法研究辛几何形态下的薄板弯曲问题。当薄板对边边界条件形式不同时,将其进行降阶形成对偶方程组,再利用分离变量法把阅题转化为本征值问题求解。通过奉征函数、辛正交关系、展开求解等手段得到了薄板的解析解。算例表明辛求解的有效性与快速收敛性。
简介:研究了用于测量运动学矢量参数的测量方法.建立矢量测量装置的广义运动学模型及带有补偿的数学模型,得到敏感器运动分离后的简化模型.然后,通过具有电磁和静电支撑补偿的天平描述敏感器的运动,建立了作用在敏感器上的广义电磁力系统运动学方程.分析结果表明使用补偿模型可以建立新型模块化矢量测量装置,解决了分析侧向连接的影响.
弹性细杆的混沌形态
辛几何形态下不同边界条件的薄板解析解
运动学矢量参数测量方法