简介:在丝绸等织物生产过程中,经常会出现织物产生非正常花纹的缺陷。目前对织物缺陷的检测主要是通过人工肉眼判别,该方法花费时间长、人工成本高,会给企业带来较大的经济负担。本文通过使用BP和SAE两种神经网络对织物进行缺陷检测,并判断是何种缺陷:首先介绍了使用BP神经网络对大量样本训练并保存,得到最佳权值,从而实现对于图像的缺陷检测和分类;训练样本通过SAE深度神经网络训练得到重构图像,再不断微调参数,获得最佳的权重数值,运用滤波器过滤噪声,最终得到结果。通过大量的实验,结果表明两种方法对织物缺陷检测均具有非常良好的效果,充分证明了深度神经网络在工业生产织物过程中运用的可行性。
简介:在高速链路中,差分线由于具有很高的鲁棒性从而应用广泛,因此差分线的补偿就显得至关重要。以寻找最优的补偿方法为研究目的,结合实际PCB工作中的层叠结构,通过在HFSS和ADS中搭建模型,对比验证不同补偿方式对差分信号质量的影响。最后,指出存在的问题并总结归纳解决方法,为今后PCB布线中差分信号线的补偿方式提出了一些建议。