简介:首先采用基于混合高斯模型与椭圆肤色模型进行手势分割,分割出手势区域,使用卡尔曼滤波器进行手势跟踪,获得手势中心点的位置。在此基础上,记录各帧中心点位置,得到运动轨迹,利用提出的轨迹模板匹配方法对动态手势进行识别。该方法利用基本的几何特征便可完成手势运动轨迹的设置与识别,无需特征选择或训练样本的搜集。最后,采用基于Zynq-7000的Zedboard平台对该算法进行实现,并采用HLS硬件加速工具进行算法加速。实验结果表明,该算法可实现较精确的手势识别,接受弹性的输入采样,识别正确率在95%以上,且通过硬件加速后,可在嵌入式平台中实时识别,具有较好的实时性。
简介:随着人工智能的发展,数字识别技术也得到了关注并通过各种算法提高了识别准确率。数字识别在安防、交通、邮政等领域发挥越来越重要的作用,是智能城市不可或缺的一环。通过采用包含隐含层的BP神经网络对数字识别进行仿真。首先介绍Mnist数据集、人工神经元模型、激活函数、BP算法等相关概念,详细描述了BP神经网络的原理,并通过实例进行BP网络设计。同时提出了6种优化方式,分别是初始化权值、设置Dropout、选取不同的激活函数、选取不同的代价函数、采用不同优化器、设置学习率。结果表明BP网络在数字识别方面具有实际应用价值,并能通过各种优化方式提高识别精度。
简介:传统的生物医学命名实体识别方法需要大量的标注数据样本,但是在实际应用中标注样本代价高昂。为降低生物医学命名实体识别对标注样本的需求,本文提出通过使用PU学习中的两步法方法,将生物医学命名实体识别问题转化为PU场景下的命名实体识别问题。在第一步中分别使用1-DNF、Spy、NB和Rocchio算法在未标注数据中抽取强负例,然后在已有的正例数据和强负例数据的基础上构建隐马尔可夫模型,最后对待分类数据进行命名实体识别。在GENIA语料库上的实验结果显示,在标注数据较少的情况下,通过使用PU学习方法的两步法构建分类模型,其性能显著优于直接使用标注数据构建的分类模型,同时降低了人工标注数据的成本。