简介:Geometriccomputingisanimportanttoolindesignandmanufacturingandinarts.Conventionally,geometriccomputingistakenbyalgebraiccomputing.Thevividintuitionofobjectsinvisualizationislostinnumericfunctions,whichishoweververyusefultohumancognitionaswellasemotion.Inthispaper,weproposedaconceptandtheoryofgeometricbasis(GB)asthesolvingcellforgeometriccomputing.EachGBrepresentsabasicgeometricoperation.GBworksasbothexpressingandsolvingcelljustliketheconceptofbasisinlinearalgebrabywhicheveryelementofthevectorspacecanbeexpressed.For3Dproblems,withaprocedureofaprojectionsreduction,theproblemcanbereducedtoplaneandthereductionfunctioncanbedesignedasaGB.AsequenceofGBcanconstructahigherlayerGB.Then,bythetraversaloftree,asequenceofGBisgotandthissequenceisjusttheconstructionprocessandalsothesolutionofthisgeometricproblem.
简介:Thispaperproposesanewcellintuitionsimulationmethodwhichisacombinationofintuitivesimulationcalculationmethodandtheoperationofbinaryimage,andapplieditintheinnovationofthegraphicdesignprocess.Firstofall,westudyhowtoexpressavarietyofgraphics,andestablishthedefinitionofcellintuitivemodel,workoutthecellintuitiveoperationprocessandmanynewcellularoperatorssuchasavarietyofmatrixblockscrossoveroperator,avarietyofmatrixblocksmutationoperator,matrixblocksreplaceoperator,matrixblockscompressionoperator,matrixblocksextensionoperator.Bychoosingtwoormorecellsandselectingtheartificialselectionorfitnessselection,wecansetupandvisualizethedesignandpickthebestdesignresults.Finally,validationismadeonthisalgorithmbyanexample,andainnovationgraphicisalsorepresented.