简介:"互"形装配式刚性节点将梁上、下翼缘拼接板交错布置在拼接梁与悬臂梁的外侧,拼接板与梁的焊缝均在工厂完成,现场只进行高强螺栓连接的一种节点形式。为了研究该新型装配式刚性节点的力学性能,通过改变翼缘拼接板宽度、厚度和摩擦系数设计了3组试件,应用ABAQUS软件进行有限元模拟分析。结果表明:拼接板厚度越大试件极限承载力越大,耗能越好;拼接板宽度对试件的受力性能影响不大;摩擦系数对试件的耗能影响明显,摩擦系数越大试件耗能性能越好。综合来看,"互"形装配式刚性节点具有良好的耗能和延性机理。此外,还将有限元结果与试验结果进行了比较,两者吻合较好。
简介:通过楼板将两种变形特性完全不同的结构体系连接而成混合结构,在受力性能上与框架结构、简体结构既具有一定的联系,又有本质的区别。本文以一30层外部为钢框架、内部为混凝土核心筒组成的混合结构为例.采用通用有限元程序SAP2000分别计算了钢框架结构、混凝土简体结构及混合结构,比较了三种结构体系的受力性能;通过调整楼板型式和板厚,探讨了楼板刚度对混合结构受力性能的影响。结果表明,采用混合结构使得结构变形、内力沿高度方向趋于均匀,受力性能得以改善;采用梁板体系能有效地减轻剪力滞后;随着楼板刚度的增加,结构高阶自振周期增大,侧移减少。层间剪力、楼层弯矩及总钢框架承担剪力、弯矩增加;而钢框架承担总剪力、弯矩百分比减少。
简介:提出一种铝合金杆件与封板节点的有效连接方法.通过铝合金杆件的模压装置进行缩管,节点强度可达杆件材料强度的80%以上.对比传统铝合金网架的连接方法,研究其受拉性能.完成了ф48×2和ф40×2两组试件、共40个网架杆件连接节点的拉伸试验,得到了杆件缩管连接方式的受拉承载力,并与有限元分析结果进行对比.试验结果表明该方法简单有效,操作方便,能够实现铝合金网架杆件的可靠连接,满足承载力要求.基于试验结果,本文方法成功应用于有着"超级天眼"之称的国家天文台FAST工程项目.
简介:提出了一种具有环向预应力的三重钢管防屈曲支撑(three-tubebuckling-restrainedbrace,TTBRB)。该防屈曲支撑由位于中间层提供轴向刚度和承载力并耗散地震能量的芯材钢管,以及分别位于芯材外部和内部限制芯材整体屈曲和局部屈曲的外套管和内套管等3部分组成。内、外套管与芯材钢管之间设置高分子聚乙烯材料制作的减摩层,以减小芯材轴向变形过程中内、外套管与芯材之间的摩擦力。相比用实心截面芯材的传统防屈曲支撑,用空心圆管作为芯材具有更大的回转半径;且取消了混凝土类填充材料,大幅度降低支撑自重,及混凝土损伤导致的耗能能力削弱。内、外套管能够限制芯材钢管的整体屈曲和局部屈曲,并可通过装配应力的方式对芯材钢管施加环向预应力,从而可改变芯材钢管的受拉或受压屈服强度。采用验证的有限元模型研究了内、外套管与芯材钢管之间的间隙和芯材钢管内环向预应力大小对TTBRB滞回性能的影响。分析结果表明,间隙较小时,芯材在轴力作用下的环向变形受到内、外套管的限制而产生环向应力,进一步施加环向预应力后,TTBRB的轴向拉压强度显著改变。仅外套管与芯材套管之间存在间隙时,TTBRB在受拉时可提前屈服,在受压时屈服强度不受影响,应作为三重钢管防屈曲支撑优先采用的方案。
简介:弦支穹顶是一种典型的由索、杆、梁单元组成的空间结构,可充分发挥预应力技术的优势来提高单层网壳的刚度和承载能力.近年来已有较多的研究和工程应用,如用于体育建筑、会展建筑等,但其建筑平面多为与穹顶球面(椭球面)网壳相应的圆形平面(椭圆形平面),比较单一,影响了推广应用范围.本文提出一种由上部单层柱面网壳和下部弦支体系组合而成矩形平面的弦支柱面网壳,对其结构型体进行了研究.根据单层柱面网壳网格类型和弦支形式提出了n环弦支单向斜杆正交正放网格型柱面网壳、n环弦支两向正交正放网格型柱面网壳、n环弦支联方网格型柱面网壳、n环弦支三向网格型柱面网壳等四种弦支柱面网壳.以单跨单波三环弦支单向斜杆正交正放网格型为例对弦支柱面网壳的受力特性进行了深入研究,探讨了预应力水平、杆件截面、矢跨比等参数变化对弦支柱面网壳内力和变位的影响,并对其特征值屈曲、非线性屈曲和基本模态进行了分析.分析研究结果表明,矩形平面的弦支柱面网壳是一种技术经济指标优越、有推广应用前景的新型空间结构.
简介:以FAST项目为背景,对铝合金网架杆件封板模压成型工艺进行简要介绍.通过对杆件材料及螺纹深度的有限元参数分析,得出模压区域铝合金材料强度的提高对杆件承载能力的影响.随着螺纹深度的增加,杆件与封板的协同作用减弱,承载力反而降低;螺纹深度在0.3mm~0.4mm之间时,比例极限强度较螺纹深度0.5mm时可提高约6%~10%.本文分析结果可为铝合金网架工程应用提供理论依据.